Atjaunināt sīkdatņu piekrišanu

AI for Health Equity and Fairness: Leveraging AI to Address Social Determinants of Health 2024 ed. [Hardback]

Edited by , Edited by , Edited by
  • Formāts: Hardback, 306 pages, height x width: 235x155 mm, 67 Illustrations, color; 10 Illustrations, black and white; XIX, 306 p. 77 illus., 67 illus. in color., 1 Hardback
  • Sērija : Studies in Computational Intelligence 1164
  • Izdošanas datums: 23-Aug-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031635914
  • ISBN-13: 9783031635915
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 180,78 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 212,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 306 pages, height x width: 235x155 mm, 67 Illustrations, color; 10 Illustrations, black and white; XIX, 306 p. 77 illus., 67 illus. in color., 1 Hardback
  • Sērija : Studies in Computational Intelligence 1164
  • Izdošanas datums: 23-Aug-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031635914
  • ISBN-13: 9783031635915
Citas grāmatas par šo tēmu:

This book aims to highlight the latest achievements in the use of AI for improving Health Equity and Fairness. The edited volume contains selected papers presented at the 2024 Health Intelligence workshop, co-located with the Thirty-Eight Association for the Advancement of Artificial Intelligence (AAAI) conference, and presents an overview of the issues, challenges, and potentials in the field, along with new research results. This book provides information for researchers, students, industry professionals, clinicians, and public health agencies interested in the applications of AI in medicine and public health.

Artificial Intelligence for Personalized Care, Wellness and Longevity
Research.- Towards Personalised Patient Risk Prediction Using Temporal
Hospital Data  Trajectories.-  Ambulance Routing for Optimizing Stroke
Patient Outcomes.- Navigating the Synthetic Realm Harnessing Diffusion based
Models for Laparoscopic Text to Image Generation.- Generation of Clinical
Skin Images with Pathology with Scarce Data.- MILFORMER Weighted Dual Stream
Class Centered Random Attention Multiple Instance Learning for Whole Slide
Image Classification.- Multi-Prompt Fine Tuning of Foundation Models for
Enhanced Biomedical Image Segmentation.- A Transformer Approach for Cognitive
Impairment Classification.- Deep Learning Approach to Identify Diabetic
Retinopathy Severity and Progression Using Ultra Wide Field Retinal Images.-
DOST Domain Obedient Self supervision for Trustworthy Multi Label
Classification with Noisy Labels.- Using Large Language Models for Generating
Smart Contracts for Health Insurance from Textual Policies.- Can GPT Improve
the State of Prior Authorization via Guideline Based Automated Question
Answering.- Designing Retrieval Augmented Language Models for Clinical
Decision Support.- Co morbidity Representation in Artificial Intelligence
Tapping into Unused Clinical Knowledge.- MedBlindTuner Towards Privacy
preserving Fine tuning on Biomedical Images with Transformers and Fully
Homomorphic Encryption.- Knowledge Grounded Medical Dialogue
Generation.- Interpretable Classification of Early Stage Parkinsons Disease
from EEG.- Semantic and Visual Attention Driven Multi LSTM Network for
Automated Clinical Report Generation.- Hierarchical Multi Label
Classification of Online Vaccine Concerns.- A Semantic Architecture for
Continuous Health Monitoring, Risk Prediction, and Proactive Decision
Making.- On the Feasibility of Multimodal Dialog Based Remote Balance
Assessment.- SAIC Integration of Speech Anonymization and Identity
Classification.