Atjaunināt sīkdatņu piekrišanu

AI Techniques for Renewable Source Integration and Battery Charging Methods in Electric Vehicle Applications [Multiple-component retail product]

Edited by , Edited by , Edited by
  • Formāts: Multiple-component retail product, 288 pages, height x width: 279x216 mm, Contains 1 Hardback and 1 Digital (delivered electronically)
  • Sērija : Advances in Civil and Industrial Engineering
  • Izdošanas datums: 03-Feb-2023
  • Izdevniecība: Engineering Science Reference
  • ISBN-10: 1668488205
  • ISBN-13: 9781668488201
Citas grāmatas par šo tēmu:
  • Multiple-component retail product
  • Cena: 405,84 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
AI Techniques for Renewable Source Integration and Battery Charging Methods  in Electric Vehicle Applications
  • Formāts: Multiple-component retail product, 288 pages, height x width: 279x216 mm, Contains 1 Hardback and 1 Digital (delivered electronically)
  • Sērija : Advances in Civil and Industrial Engineering
  • Izdošanas datums: 03-Feb-2023
  • Izdevniecība: Engineering Science Reference
  • ISBN-10: 1668488205
  • ISBN-13: 9781668488201
Citas grāmatas par šo tēmu:
Artificial intelligence techniques applied in the power system sector make the prediction of renewable power source generation and demand more efficient and effective. Additionally, since renewable sources are intermittent in nature, it is necessary to predict and analyze the data of input sources. Hence, further study on the prediction and data analysis of renewable energy sources for sustainable development is required. AI Techniques for Renewable Source Integration and Battery Charging Methods in Electric Vehicle Applications focuses on artificial intelligence techniques for the evolving power system field, electric vehicle market, energy storage elements, and renewable energy source integration as distributed generators. Covering key topics such as deep learning, artificial intelligence, and smart solar energy, this premier reference source is ideal for environmentalists, computer scientists, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students.