Atjaunināt sīkdatņu piekrišanu

Airborne Measurements for Environmental Research: Methods and Instruments [Hardback]

Edited by (University of Leipzig, Germany), Edited by (Meteo-France, Toulouse, France)
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 201,15 €*
  • * Šī grāmata vairs netiek publicēta. Jums tiks paziņota lietotas grāmatas cena
  • Šī grāmata vairs netiek publicēta. Jums tiks paziņota lietotas grāmatas cena.
  • Daudzums:
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
Citas grāmatas par šo tēmu:
This first comprehensive review of airborne measurement principles covers all atmospheric components and surface parameters. It describes the common techniques to characterize aerosol particles and cloud/precipitation elements, while also explaining radiation quantities and pertinent hyperspectral and active remote sensing measurement techniques along the way. As a result, the major principles of operation are introduced and exemplified using specific instruments, treating both classic and emerging measurement techniques.
The two editors head an international community of eminent scientists, all of them accepted and experienced specialists in their field, who help readers to understand specific problems related to airborne research, such as immanent uncertainties and limitations. They also provide guidance on the suitability of instruments to measure certain parameters and to select the correct type of device.
While primarily intended for climate, geophysical and atmospheric researchers, its relevance to solar system objects makes this work equally appealing to astronomers studying atmospheres of solar system bodies with telescopes and space probes.
Preface xvii
A Tribute to Dr. Robert Knollenberg xxi
List of Contributors
xxiii
1 Introduction to Airborne Measurements of the Earth Atmosphere and Surface
1(6)
Ulrich Schumann
David W. Fahey
Manfred Wendisch
Jean-Louis Brenguier
2 Measurement of Aircraft State and Thermodynamic and Dynamic Variables
7(70)
Jens Bange
Marco Esposito
Donald H. Lenschow
Philip R. A. Brown
Volker Dreiling
Andreas Giez
Larry Mahrt
Szymon P. Malinowski
Alfred R. Rodi
Raymond A. Shaw
Holger Siebert
Herman Smit
Martin Zoger
2.1 Introduction
7(1)
2.2 Historical
8(2)
2.3 Aircraft State Variables
10(8)
2.3.1 Barometric Measurement of Aircraft Height
10(2)
2.3.2 Inertial Attitude, Velocity, and Position
12(1)
2.3.2.1 System Concepts
12(1)
23.2.2 Attitude Angle Definitions
12(2)
2.3.2.3 Gyroscopes and Accelerometers
14(1)
2.3.2.4 Inertial-Barometric Corrections
15(1)
2.3.3 Satellite Navigation by Global Navigation Satellite Systems
15(1)
2.3.3.1 GNSS Signals
15(1)
2.3.3.2 Differential GNSS
16(1)
2.3.3.3 Position Errors and Accuracy of Satellite Navigation
17(1)
2.3.4 Integrated IMU/GNSS Systems for Position and Attitude Determination
18(1)
2.3.5 Summary, Gaps, Emerging Technologies
18(1)
2.4 Static Air Pressure
18(6)
2.4.1 Position Error
20(2)
2.4.1.1 Tower Flyby
22(1)
2.4.1.2 Trailing Sonde
23(1)
2.4.2 Summary
24(1)
2.5 Static Air Temperature
24(11)
2.5.1 Aeronautic Definitions of Temperatures
25(1)
2.5.2 Challenges of Airborne Temperature Measurements
25(2)
2.5.3 Immersion Probe
27(2)
2.5.4 Reverse-Flow Sensor
29(1)
2.5.5 Radiative Probe
30(1)
2.5.6 Ultrasonic Probe
31(1)
2.5.7 Error Sources
32(1)
2.5.7.1 Sensor
32(1)
2.5.7.2 Dynamic Error Sources
33(1)
2.5.7.3 In-Cloud Measurements
34(1)
2.5.8 Calibration of Temperature Sensors
34(1)
2.5.9 Summary, Gaps, Emerging Technologies
34(1)
2.6 Water Vapor Measurements
35(15)
2.6.1 Importance of Atmospheric Water Vapor
35(1)
2.6.2 Humidity Variables
36(1)
2.6.3 Dew or Frost Point Hygrometer
37(2)
2.6.4 Lyman-α Absorption Hygrometer
39(1)
2.6.5 Lyman-α Fluorescence Hygrometer
40(1)
2.6.6 Infrared Absorption Hygrometer
41(2)
2.6.7 Tunable Laser Absorption Spectroscopy Hygrometer
43(1)
2.6.8 Thin Film Capacitance Hygrometer
44(1)
2.6.9 Total Water Vapor and Isotopic Abundances of 18O and 2H
45(1)
2.6.10 Factors Influencing In-Flight Performance
46(1)
2.6.10.1 Sticking of Water Vapor at Surfaces
46(1)
2.6.10.2 Sampling Systems
47(1)
2.6.11 Humidity Measurements with Dropsondes
47(1)
2.6.12 Calibration and In-Flight Validation
48(1)
2.6.13 Summary and Emerging Technologies
49(1)
2.7 Three-Dimensional Wind Vector
50(8)
2.7.1 Airborne Wind Measurement Using Gust Probes
52(1)
2.7.1.1 True Airspeed (TAS) and Aircraft Attitude
52(1)
2.7.1.2 Wind Vector Determination
53(1)
2.7.1.3 Baseline Instrumentation
54(1)
2.7.1.4 Angles of Attack and Sideslip
55(1)
2.7.2 Errors and Flow Distortion
56(1)
2.7.2.1 Parameterization Errors
56(1)
2.7.2.2 Measurement Errors
56(1)
2.7.2.3 Timing Errors
57(1)
2.7.2.4 Errors due to Incorrect Sensor Configuration
57(1)
2.7.3 In-Flight Calibration
57(1)
2.8 Small-Scale Turbulence
58(10)
2.8.1 Hot-Wire/Hot-Film Probes for High-Resolution Flow Measurements
58(2)
2.8.2 Laser Doppler Anemometers
60(2)
2.8.3 Ultrasonic Anemometers/Thermometers
62(2)
2.8.4 Measurements of Atmospheric Temperature Fluctuations with Resistance Wires
64(2)
2.8.5 Calibration of Fast-Response Sensors
66(1)
2.8.6 Summary, Gaps, and Emerging Technologies
67(1)
2.9 Flux Measurements
68(9)
2.9.1 Basics
68(1)
2.9.2 Measurement Errors
69(2)
2.9.3 Flux Sampling Errors
71(1)
2.9.3.1 Systematic Flux Error
71(1)
2.9.3.2 Random Flux Error
72(1)
2.9.4 Area-Averaged Turbulent Flux
73(1)
2.9.5 Preparation for Airborne Flux Measurement
74(3)
3 In Situ Trace Gas Measurements
77(80)
Jim McQuaid
Hans Schlager
Maria Dolores Andres-Hernandez
Stephen Ball
Agnes Borbon
Steve S. Brown
Valery Catoire
Piero Di Carlo
Thomas G. Custer
Marc von Hobe
James Hopkins
Klaus Pfeilsticker
Thomas Rockmann
Anke Roiger
Fred Stroh
Jonathan Williams
Helmut Ziereis
3.1 Introduction
77(4)
3.2 Historical and Rationale
81(2)
3.3 Aircraft Inlets for Trace Gases
83(1)
3.4 Examples of Recent Airborne Missions
84(2)
3.5 Optical In Situ Techniques
86(34)
3.5.1 UV Photometry
86(2)
3.5.2 Differential Optical Absorption Spectroscopy
88(1)
3.5.2.1 Measurement Principle
88(3)
3.5.2.2 Examples of Measurement
91(4)
3.5.3 Cavity Ring-Down Spectroscopy
95(1)
3.5.3.1 Measurement Principle
95(3)
3.5.3.2 Aircraft Implementation
98(1)
3.5.3.3 Calibration and Uncertainty
99(2)
3.5.3.4 Broadband Cavity Spectroscopic Methods
101(2)
3.5.4 Gas Filter Correlation Spectroscopy
103(1)
3.5.5 Tunable Laser Absorption Spectroscopy
104(1)
3.5.5.1 Tunable Diode Versus QCLs
105(1)
3.5.5.2 Further Progress
106(1)
3.5.6 Fluorescence Techniques
107(1)
3.5.6.1 Resonance Fluorescence
107(1)
3.5.6.2 LIF Techniques
107(5)
3.5.6.3 Chemical Conversion Resonance Fluorescence Technique
112(8)
3.6 Chemical Ionization Mass Spectrometry
120(11)
3.6.1 Negative-Ion CIMS
120(1)
3.6.1.1 Measurement Principle and Aircraft Implementation
121(1)
3.6.1.2 Calibration and Uncertainties
121(2)
3.6.1.3 Measurement Example
123(1)
3.6.2 The Proton Transfer Reaction Mass Spectrometer
123(6)
3.6.3 Summary and Future Perspectives
129(2)
3.7 Chemical Conversion Techniques
131(16)
3.7.1 Peroxy Radical Chemical Amplification
131(1)
3.7.1.1 Measurement Principles
131(1)
3.7.1.2 Airborne Measurements
132(1)
3.7.1.3 Calibration and Uncertainties
133(4)
3.7.2 Chemiluminescence Techniques
137(1)
3.7.2.1 Measurement Principle
137(1)
3.7.2.2 Measurement of Ozone Using Chemiluminescence
138(1)
3.7.2.3 NOy and NOz Conversion
139(1)
3.7.2.4 Calibration and Uncertainties
139(2)
3.7.2.5 Measurement Examples
141(1)
3.7.2.6 Summary
142(1)
3.7.3 Liquid Conversion Techniques
143(1)
3.7.3.1 Measurement Principles
143(1)
3.7.3.2 Aircraft Implementation
144(1)
3.7.3.3 Data Processing
145(1)
3.7.3.4 Limitations, Uncertainties, and Error Propagation
146(1)
3.7.3.5 Calibration and Maintenance
146(1)
3.7.3.6 Measurement Examples
146(1)
3.7.3.7 Summary and Emerging Technologies
147(1)
3.8 Whole Air Sampler and Chromatographic Techniques
147(10)
3.8.1 Rationale
147(1)
3.8.2 Whole Air Sampling Systems
148(1)
3.8.2.1 Design of Air Samplers
148(1)
3.8.2.2 The M55-Geophysica Whole Air Sampler
149(1)
3.8.3 Water Vapor Sampling for Isotope Analysis
150(1)
3.8.4 Measurement Examples
150(2)
3.8.5 Off-Line Analysis of VOCs
152(1)
3.8.5.1 Air Mass Ageing
153(1)
3.8.5.2 Using VOC Observations to Probe Radical Chemistry
154(3)
4 In Situ Measurements of Aerosol Particles
157(68)
Andreas Petzold
Paola Formenti
Darrel Baumgardner
Ulrich Bundke
Hugh Coe
Joachim Curtius
Paul J. DeMott
Richard C. Flagan
Markus Fiebig
James G. Hudson
Jim McQuaid
Andreas Minikin
Gregory C. Roberts
Jian Wang
4.1 Introduction
157(7)
4.1.1 Historical Overview
157(2)
4.1.2 Typical Mode Structure of Aerosol Particle Size Distribution
159(1)
4.1.3 Quantitative Description of Aerosol Particles
159(3)
4.1.4
Chapter Structure
162(2)
4.2 Aerosol Particle Number Concentration
164(4)
4.2.1 Condensation Particle Counters
164(2)
4.2.2 Calibration of Cut-Off and Low-Pressure Detection Efficiency
166(2)
4.3 Aerosol Particle Size Distribution
168(16)
4.3.1 Single-Particle Optical Spectrometers
168(1)
4.3.1.1 Measurement Principles and Implementation
169(3)
4.3.1.2 Measurement Issues
172(2)
4.3.2 Aerodynamic Separators
174(2)
4.3.3 Electrical Mobility Measurements of Particle Size Distributions
176(5)
4.3.4 Inversion Methods
181(3)
4.4 Chemical Composition of Aerosol Particles
184(16)
4.4.1 Direct Offline Methods
185(6)
4.4.2 Direct Online Methods (Aerosol Mass Spectrometer, Single Particle Mass Spectrometer, and Particle-Into-Liquid Sampler)
191(1)
4.4.2.1 Bulk Aerosol Collection and Analysis
191(2)
4.4.2.2 Mass Spectrometric Methods
193(4)
4.4.2.3 Incandescence Methods
197(2)
4.4.3 Indirect Methods
199(1)
4.5 Aerosol Optical Properties
200(10)
4.5.1 Scattering Due to Aerosol Particles
201(2)
4.5.2 Absorption of Solar Radiation Due to Aerosol Particles
203(1)
4.5.2.1 Filter-Based Methods
204(1)
4.5.2.2 In Situ Methods
205(1)
4.5.2.3 Airborne Application
206(2)
4.5.3 Extinction Due to Aerosol Particles
208(1)
4.5.4 Inversion Methods
209(1)
4.6 CCN and IN
210(9)
4.6.1 CCN Measurements Methods
212(1)
4.6.2 IN Measurement Methods
213(4)
4.6.3 Calibration
217(1)
4.6.3.1 CCN Instrument Calibration
217(1)
4.6.3.2 IN Instrument Calibration
218(1)
4.7 Challenges and Emerging Techniques
219(6)
4.7.1 Particle Number
219(1)
4.7.2 Particle Size
220(1)
4.7.3 Aerosol Optical Properties
221(1)
4.7.4 Chemical Composition of Aerosol Particles
222(1)
4.7.5 CCN Measurements
222(1)
4.7.6 IN Measurements
223(2)
5 In Situ Measurements of Cloud and Precipitation Particles
225(78)
Jean-Louis Brenguier
William Bachalo
Patrick Y. Chuang
Biagio M. Esposito
Jacob Fugal
Timothy Garrett
Jean-Francois Gayet
Hermann Gerber
Andy Heymsfield
Alexander Kokhanovsky
Alexei Korolev
R. Paul Lawson
David C. Rogers
Raymond A. Shaw
Walter Strapp
Manfred Wendisch
5.1 Introduction
225(11)
5.1.1 Rationale
225(1)
5.1.2 Characterization of Cloud Microphysical Properties
226(1)
5.1.3
Chapter Outline
227(6)
5.1.4 Statistical Limitations of Airborne Cloud Microphysical Measurements
233(3)
5.2 Impaction and Replication
236(3)
5.2.1 Historical
236(1)
5.2.2 Measurement Principles and Implementation
236(2)
5.2.3 Measurement Issues
238(1)
5.3 Single-Particle Size and Morphology Measurements
239(27)
5.3.1 Retrieval of the PSD
241(1)
5.3.1.1 Correction of Coincidence Effects
242(1)
5.3.1.2 Optimal Estimation of the Particle Concentration
243(1)
5.3.2 Single-Particle Light Scattering
243(1)
5.3.2.1 Measurement Principles and Implementation
243(9)
5.3.2.2 Measurement Issues
252(2)
5.3.2.3 Summary
254(1)
5.3.3 Single-Particle Imaging
254(2)
5.3.3.1 Measurement Principles and Implementation
256(5)
5.3.3.2 Measurement Issues
261(1)
5.3.3.3 Summary
262(1)
5.3.4 Imaging of Particle Ensembles -- Holography
263(3)
5.4 Integral Properties of an Ensemble of Particles
266(20)
5.4.1 Thermal Techniques for Cloud LWC and IWC
266(1)
5.4.1.1 Hot-Wire Techniques
266(3)
5.4.1.2 Mass-Sensitive Devices
269(1)
5.4.1.3 Measurement Issues
270(2)
5.4.2 Optical Techniques for the Measurement of Cloud Water
272(1)
5.4.2.1 The PVM
272(2)
5.4.2.2 Angular Optical Cloud Properties
274(2)
5.4.2.3 The PN
276(4)
5.4.2.4 The CIN
280(3)
5.4.2.5 The CEP
283(2)
5.4.2.6 Measurement Issues
285(1)
5.5 Data Analysis
286(9)
5.5.1.1 Adjustment to Adiabaticity
287(1)
5.5.1.2 Instrument Intercalibration
288(1)
5.5.1.3 Instrument Spatial Resolution
289(2)
5.5.1.4 Integrating Measurements from Scattering and Imaging Probes
291(1)
5.5.1.5 Integrating Cloud Microphysical and Optical Properties
292(1)
5.5.1.6 Evaluation of OAP Images
293(2)
5.6 Emerging Technologies
295(8)
5.6.1 Interferometric Laser Imaging for Droplet Sizing
296(2)
5.6.2 The Backscatter Cloud Probe
298(1)
5.6.3 The Cloud Particle Spectrometer with Depolarization
299(2)
5.6.4 Hawkeye Composite Cloud Particle Probe
301(1)
Acknowledgments
301(2)
6 Aerosol and Cloud Particle Sampling
303(40)
Martina Kramer
Cynthia Twohy
Markus Hermann
Armin Afchine
Suresh Dhaniyala
Alexei Korolev
6.1 Introduction
303(2)
6.2 Aircraft Influence
305(6)
6.2.1 Flow Perturbation
306(2)
6.2.2 Particle Trajectories
308(2)
6.2.3 Measurement Artifacts
310(1)
6.3 Aerosol Particle Sampling
311(13)
6.3.1 Particle Loss Processes
311(2)
6.3.2 Sampling Efficiency
313(1)
6.3.2.1 Inlet Efficiency
313(2)
6.3.2.2 Transport Efficiency Inside the Sampling Line
315(1)
6.3.3 Inlet Types
315(1)
6.3.3.1 Solid Diffuser-Type Inlet
316(1)
6.3.3.2 Isokinetic Diffuser-Type Inlet
316(1)
6.3.3.3 Low-Turbulence Inlet
317(2)
6.3.3.4 Nested Diffuser-Type Inlet
319(1)
6.3.4 Size Segregated Aerosol Sampling
319(3)
6.3.5 Sampling Artifacts
322(2)
6.4 Cloud Particle Sampling
324(16)
6.4.1 Cloud Sampling Issues
325(1)
6.4.1.1 Effect of Mounting Location
325(1)
6.4.1.2 Effect of Probe Housings
325(2)
6.4.1.3 Droplet Splashing and Breakup
327(1)
6.4.1.4 Ice Particle Bouncing and Shattering
328(7)
6.4.2 Bulk Cloud Sampling
335(1)
6.4.2.1 Cloud Water Content -- Inlet-Based Evaporating Systems
336(2)
6.4.2.2 Chemical Composition of Cloud Water -- Bulk Sampling Systems
338(2)
6.5 Summary and Guidelines
340(3)
7 Atmospheric Radiation Measurements
343(70)
Manfred Wendisch
Peter Pilewskie
Birger Bohn
Anthony Bucholtz
Susanne Crewell
Chawn Harlow
Evelyn Jakel
K. Sebastian Schmidt
Rick Shetter
Jonathan Taylor
David D. Turner
Martin Zoger
7.1 Motivation
343(1)
7.2 Fundamentals
344(8)
7.2.1 Spectrum of Atmospheric Radiation
344(1)
7.2.2 Geometric Definitions
345(1)
7.2.3 Vertical Coordinate: Optical Depth
346(1)
7.2.4 Quantitative Description of Atmospheric Radiation Field
347(2)
7.2.5 Basic Radiation Laws
349(1)
7.2.5.1 Lambert -- Bouguer Law
349(1)
7.2.5.2 Planck Law
350(1)
7.2.5.3 Kirchhoff's Law
351(1)
7.2.5.4 Brightness Temperature
351(1)
7.2.5.5 Stefan -- Boltzmann Law
352(1)
7.3 Airborne Instruments for Solar Radiation
352(33)
7.3.1 Broadband Solar Irradiance Radiometers
353(1)
7.3.1.1 Background
353(2)
7.3.1.2 Instruments
355(3)
7.3.1.3 Calibration
358(3)
7.3.1.4 Application
361(1)
7.3.1.5 Challenges
362(1)
7.3.2 Solar Spectral Radiometers for Irradiance and Radiance
363(1)
7.3.2.1 Instruments
363(2)
7.3.2.2 Calibration
365(2)
7.3.2.3 Application
367(2)
7.3.3 Spectral Actinic Flux Density Measurements
369(1)
7.3.3.1 Background
369(1)
7.3.3.2 Instruments
369(1)
7.3.3.3 Calibrations
370(2)
7.3.3.4 Application
372(1)
7.3.4 Directly Transmitted Solar Spectral Irradiance
373(1)
7.3.4.1 Background
373(1)
73.4.2 Instruments
374(3)
7.3.4.3 Calibration
377(1)
7.3.4.4 Application
378(1)
7.3.5 Solar Radiometer Attitude Issues
379(1)
7.3.5.1 Background
379(2)
7.3.5.2 After-Flight Software Corrections for Fixed Instruments
381(2)
7.3.5.3 Stabilized Platforms
383(2)
7.3.5.4 Challenges
385(1)
7.4 Terrestrial Radiation Measurements from Aircraft
385(28)
7.4.1 Broadband TIR Irradiance Measurement with Pyrgeometers
386(1)
7.4.1.1 Instruments
386(2)
7.4.1.2 Calibration
388(1)
7.4.2 TIR Spectral Radiance
388(1)
7.4.2.1 Instruments
388(1)
7.4.2.2 Calibration
389(1)
7.4.2.3 Application
390(1)
7.4.3 TIR Interferometry
390(1)
7.4.3.1 Background
390(1)
7.4.3.2 Instruments
391(2)
7.4.3.3 Calibration
393(2)
7.4.3.4 Principal Component Noise Filtering
395(3)
7.4.3.5 Application
398(2)
7.4.4 Microwave Radiometers
400(1)
7.4.4.1 Background
400(5)
7.4.4.2 Instruments
405(3)
7.4.4.3 Application
408(3)
7.4.4.4 Challenges
411(2)
8 Hyperspectral Remote Sensing
413(44)
Eyal Ben-Dor
Daniel Schlapfer
Antonio J. Plaza
Tim Malthus
8.1 Introduction
413(1)
8.2 Definition
414(2)
8.3 History
416(1)
8.4 Sensor Principles
417(2)
8.5 HRS Sensors
419(9)
8.5.1 General
419(3)
8.5.2 Current HRS Sensors in Europe
422(3)
8.5.3 Satellite HRS Sensors
425(3)
8.6 Potential and Applications
428(2)
8.7 Planning of an HRS Mission
430(2)
8.8 Spectrally Based Information
432(7)
8.9 Data Analysis
439(12)
8.9.1 General
439(1)
8.9.2 Atmospheric Correction
440(1)
8.9.2.1 Empirical Reflectance Normalization
441(1)
8.9.2.2 At-Sensor Radiance Description
442(1)
8.9.2.3 Radiative-Transfer-Based Atmospheric Correction
443(1)
8.9.3 Process of Complete Atmospheric Correction
444(1)
8.9.3.1 Atmospheric Parameter Retrieval
445(1)
8.9.3.2 Adjacency Correction
445(1)
8.9.3.3 Shadow Correction
445(1)
8.9.3.4 BRDF Correction
445(1)
8.9.4 Retrieval of Atmospheric Parameters
446(1)
8.9.5 Mapping Methods and Approaches
447(4)
8.10 Sensor Calibration
451(5)
8.10.1 General
451(2)
8.10.2 Calibration for HSR Sensor
453(1)
8.10.2.1 Preflight Calibration
453(1)
8.10.2.2 In-Flight/In-Orbit Calibration
454(1)
8.10.2.3 Vicarious Calibration
454(2)
8.11 Summary and Conclusion
456(1)
9 LIDAR and RADAR Observations
457(70)
Jacques Pelon
Gabor Vali
Gerard Ancellet
Gerhard Ehret
Pierre H. Flamant
Samuel Haimov
Gerald Heymsfield
David Leon
James B. Mead
Andrew L. Pazmany
Alain Protat
Zhien Wang
Mengistu Wolde
9.1 Historical
457(1)
9.2 Introduction
457(1)
9.3 Principles of LIDAR and RADAR Remote Sensing
458(14)
9.3.1 LIDAR and RADAR Equations
458(2)
9.3.2 Dependence on Atmospheric Spectral Scattering/Absorption Properties
460(2)
9.3.3 Basic Instrument Types and Measurement Methods
462(1)
9.3.3.1 Backscatter and Reflectivity
462(1)
9.3.3.2 Doppler
463(2)
9.3.3.3 Differential -- Absorption
465(2)
9.3.4 LIDAR and RADAR Types and Configurations
467(1)
9.3.4.1 Different Types of LIDAR Systems
468(1)
9.3.4.2 Different Types of RADAR Systems
469(3)
9.4 LIDAR Atmospheric Observations and Related Systems
472(19)
9.4.1 Aerosol and Clouds
472(1)
9.4.1.1 Structure
472(1)
9.4.1.2 Optical Parameters
472(1)
9.4.1.3 Cloud Phase, Effective Diameter of Cloud Droplets and Ice Crystals
473(2)
9.4.2 Winds in Cloud-Free Areas
475(1)
9.4.2.1 Wind from Scattering by Particles
476(1)
9.4.2.2 Wind from Scattering by Molecules
476(2)
9.4.3 Water Vapor
478(2)
9.4.3.1 Airborne H2O - DIAL Instruments
480(2)
9.4.3.2 Measurement Examples
482(1)
9.4.4 Other Gases
483(1)
9.4.4.1 Ozone
483(1)
9.4.4.2 Carbon Dioxide
484(2)
9.4.4.3 Methane
486(1)
9.4.5 Water Vapor Flux Measurements
486(3)
9.4.6 Calibration: Precision and Accuracy
489(1)
9.4.6.1 Calibration on Molecular Scattering
489(1)
9.4.6.2 Calibration Using a Hard Target
490(1)
9.4.6.3 Calibration Using Sea Surface Reflectance
490(1)
9.5 Cloud and Precipitation Observations with RADAR
491(26)
9.5.1 Reflectivity from Cloud Droplets, Rain and Ice Crystals
491(6)
9.5.2 Attenuation
497(4)
9.5.3 Doppler RADAR Measurements
501(3)
9.5.4 Polarization Measurements
504(5)
9.5.5 Calibration: Precision and Accuracy
509(2)
9.5.5.1 Calibration using Retroreflectors
511(5)
9.5.5.2 Calibration Using Sea Surface Reflectance
516(1)
9.6 Results of Airborne RADAR Observations -- Some Examples
517(1)
9.7 Parameters Derived from Combined Use of LIDAR and RADAR
518(7)
9.7.1 Ice Cloud Microphysical Properties Retrieval with Airborne LIDAR and RADAR
518(3)
9.7.2 Water Cloud Microphysical Properties Retrievals with Airborne Multi-Sensor Measurements
521(3)
9.7.3 Mixed-Phase Cloud Microphysical Properties Retrievals with Airborne Multi-Sensor Measurements
524(1)
9.8 Conclusion and Perspectives
525(2)
Acknowledgments
526(1)
Appendix A Supplementary Online Material www.wiley-vch.de
A.1 Measuring the Three-Dimensional Wind Vector Using a Five-Hole Probe
A.1.1 Rosemount Method
A.1.2 Five-Difference Method and Calibration
A.1.3 In-Flight Calibration
A.1.3.1 The Lenschow Maneuvers
A.1.3.2 Reverse Heading Maneuver
A.1.3.3 Speed Variation Maneuver
A.1.3.4 Pitch Maneuver
A.1.3.5 Yaw Maneuver
A.1.3.6 Rodi Maneuvers
A.2 Small-Scale Turbulence
A.2.1 Sampling and Sensor Resolution
A.3 Laser Doppler Velocimetry: Double Doppler Shift and Beats
A.4 Scattering and Extinction of Electromagnetic Radiation by Particles
A.4.1 Approximate Solutions of Light Scattering Problems as Used in the Processing Software of Modern-Size Spectrometers
A.4.2 Light Scattering Theory for Specific Spectrometers
A.4.3 Imaging Theory
A.4.4 Holography Theory
A.5 LIDAR and RADAR Observations
A.5.1 Overview of Airborne RADAR Systems
A.5.2 Results of Airborne RADAR Observations -- Some Examples
A.6 Processing Toolbox
A.6.1 Installation and Use
Color Plates 527(12)
List of Abbreviations 539(10)
Constants 549(2)
References 551(90)
Index 641
Manfred Wendisch is a professor and director of the Institute of Meteorology at the University of Leipzig, Germany, and holds a permanent guest professor appointment at the Chinese Academy of Sciences in Beijing. Professor Wendisch is member of the Saxonian Academy of Sciences.



Jean-Louis Brenguier is Director of the Experimental and Instrumental meteorology Group of the French Meteorological Service, and Coordinator of the European facilities for Airborne Research (EUFAR). His research activities comprise aerosol detection.

Both authors are highly regarded with the community.