Atjaunināt sīkdatņu piekrišanu

E-grāmata: Aircraft Control Allocation

(Embry-Riddle Aeronautical University, USA), (Dynamic Concepts, Inc., USA), Series edited by (MIT), Series edited by (BAE Systems, UK), Series edited by (University of Liverpool, UK), (Virginia Polytechnic Institute and State University, USA)
  • Formāts: PDF+DRM
  • Sērija : Aerospace Series
  • Izdošanas datums: 15-Nov-2016
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781118827765
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 114,15 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Sērija : Aerospace Series
  • Izdošanas datums: 15-Nov-2016
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781118827765
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Aircraft Control Allocation

Wayne Durham, Virginia Polytechnic Institute and State University, USA

Kenneth A. Bordignon, Embry-Riddle Aeronautical University, USA

Roger Beck, Dynamic Concepts, Inc., USA

 

An authoritative work on aircraft control allocation by its pioneers

 

Aircraft Control Allocation addresses the problem of allocating supposed redundant flight controls. It provides introductory material on flight dynamics and control to provide the context, and then describes in detail the geometry of the problem. The book includes a large section on solution methods, including 'Banks' method', a previously unpublished procedure. Generalized inverses are also discussed at length. There is an introductory section on linear programming solutions, as well as an extensive and comprehensive appendix dedicated to linear programming formulations and solutions. Discrete-time, or frame-wise allocation, is presented, including rate-limiting, nonlinear data, and preferred solutions.

 

Key features:

  • Written by pioneers in the field of control allocation.
  • Comprehensive explanation and discussion of the major control allocation solution methods.
  • Extensive treatment of linear programming solutions to control allocation.
  • A companion web site contains the code of a MATLAB/Simulink flight simulation with modules that incorporate all of the major solution methods.
  • Includes examples based on actual aircraft.

 

 

The book is a vital reference for researchers and practitioners working in aircraft control, as well as graduate students in aerospace engineering.

Recenzijas

"The book is a vital reference for researchers and practitioners working in aircraft control, as well as graduate students in aerospace engineering" Expofairs, Sept 2017

Dedication xiii
Series Preface xv
Glossary xvii
About the Companion Website xxiii
1 Introduction
1(5)
1.1 Redundant Control Effectors
1(2)
1.2 Overview
3(3)
References
5(1)
2 Aircraft Control
6(14)
2.1 Flight Dynamics
6(6)
2.1.1 Equations of Motion
6(4)
2.1.2 Linearized Equations of Motion
10(2)
2.2 Control
12(6)
2.2.1 General
12(1)
2.2.2 Aircraft Control. Effectors
13(4)
2.2.3 Aircraft Control Inceptors
17(1)
2.3 Afterword
18(2)
References
19(1)
3 Control Laws
20(10)
3.1 Flying Qualities
20(1)
3.1.1 Requirements
21(1)
3.1.2 Control Law Design to Satisfy Flying Qualities Requirements
21(1)
3.2 Dynamic-inversion Control Laws
21(6)
3.2.1 Basics
21(1)
3.2.2 Types of Equations
22(1)
3.2.3 The Controlled Equations
23(2)
3.2.4 The Kinematic and Complementary Equations
25(2)
3.3 Model-following Control Laws
27(1)
3.4 `Conventional' Control Laws
27(1)
3.5 Afterword
28(2)
References
29(1)
4 The Problem
30(4)
4.1 Control Effectiveness
30(1)
4.2 Constraints
31(1)
4.3 Control Allocation
31(1)
4.5.1 The Control Allocation Problem
32(1)
4.4 Afterword
32(2)
References
33(1)
5 The Geometry of Control Allocation
34(31)
5.1 Admissible Controls
34(5)
5.1.1 General
34(1)
5.1.2 Objects
34(3)
5.1.3 Intersection and Union
37(2)
5.7.4 Convex Hull
39(1)
5.2 Attainable Moments
39(4)
5.3 The Two-moment Problem
43(6)
5.3.1 Area Calculations
48(1)
5.4 The Three-moment Problem
49(9)
5.4.1 Determination of φ3
49(7)
5.4.2 Volume Calculations
56(2)
5.5 Significance of the Maximum Set
58(4)
5.5.1 As a Standard of Comparison of Different Methods
59(1)
5.5.2 Maneuver Requirements
60(2)
5.5.3 Control Failure Reconfiguration
62(1)
5.6 Afterword
62(3)
References
64(1)
6 Solutions
65(74)
6.1 On-line vs. Off-line Solutions
65(1)
6.1.1 On-line Solutions
65(1)
6.1.2 Off-line Solutions
65(1)
6.2 Optimal vs. Non-optimal Solutions
66(2)
6.2.1 Maximum Capabilities
66(1)
6.2.2 Maximum Volume
66(1)
6.2.3 Nearest to Preferred
66(1)
6.2.4 Unattainable Moments
67(1)
6.3 Preferred Solutions
68(1)
6.4 Ganging
68(2)
6.5 Generalized Inverses
70(10)
6.5.1 The General Case, and the Significance of P2
70(3)
6.5.2 Tailored Generalized Inverses
73(1)
6.5.3 `Best' Generalized Inverse
74(1)
6.5.4 Pseudo-inverses
75
6.5.5 Methods that Incorporate Generalized Inverses
11(69)
6.6 Direct Allocation
80(4)
6.6.1 The Direct Method for the Two-moment Problem
81(1)
6.6.2 The Direct Method for the Three-moment Problem
82(2)
6.7 Edge and Facet Searching
84(6)
6.7.1 Two-dimensional Edge Searching
85(3)
6.7.2 Three-dimensional Facet Searching
88(2)
6.8 Banks' Method
90(5)
6.5.7 Finding the Original Three Vertices
92(1)
6.8.2 Determining a New Vertex
93(1)
6.8.3 Replacing an Old Vertex
93(2)
6.8.4 Terminating the Algorithm
95(1)
6.9 Linear Programming
95(5)
6.9.1 Casting Control Allocation as a Linear Program
96(3)
6.9.2 Simplex
99(1)
6.10 Moments Attainable by Various Solution Methods
100(11)
6.10.1 General Case (Three-moment Problem)
101(1)
6.10.2 Generalized Inverses (Two- and Three-moment Problems)
102(9)
6.11 Examples
111(26)
6.11.1 Generalized Inverses
111(8)
6.11.2 Direct Allocation
119(3)
6.11.3 Edge and Facet Searching
122(6)
6.11.4 Banks' Method
128(4)
6.11.5 Linear Programming
132(2)
6.11.6 Convex-hull Volume Calculations
134(3)
6.12 Afterword
137(2)
References
137(2)
7 Frame-wise Control Allocation
139(22)
7.1 General
139(2)
7.2 Path Dependency
141(6)
7.2.1 Examples of Path Dependency
142(5)
7.3 Global vs. Local Control Effectiveness
147(2)
7.4 Restoring
149(12)
7.4.1 The Augmented B matrix
150(2)
7.4.2 Implementation
152(1)
7.4.3 Chattering
153(1)
7.4.4 Minimum-norm Restoring
154(7)
8 Control Allocation and Flight Control System Design
161(17)
8.1 Dynamic-inversion Desired Accelerations
161(7)
8.1.1 The Desired Acceleration: xdes
161(2)
8.1.2 Command and Regulator Examples
163(5)
8.2 The Maximum Set and Control Law Design
168(10)
8.2.1 In the Design Process
168(4)
8.2.2 In a Mature Design
172(2)
8.2.3 Non-optimal Example
174(3)
References
177(1)
9 Applications
178(8)
9.1 Lessons Learned from the Design of the X-35 Flight Control System
178(1)
9.1.1 Theory vs. Practice
178(1)
9.2 Uses of Redundancy
179(1)
9.2.1 Preferred Solutions
179(1)
9.2.2 Resolving Path-dependency Issues
180(1)
9.3 Design Constraints
180(4)
9.3.1 Axis Prioritization
180(2)
9.3.2 Structural Loads
182(1)
9.3.3 Effector Bandwidth
183(1)
9.3.4 Gain Limiting and Stability Margins
184(1)
9.4 Failure Accommodation
184(2)
References
185(1)
A Linear Programming
186(51)
A.1 Control Allocation as a Linear Program
187(6)
A.1.1 Optimally for Attainable Commands
188(1)
A.l.2 Optimality for Unattainable Commands
188(5)
A.2 Standard Forms for Linear Programming Problems
193(8)
A.2.1 Dealing with Negative Unknowns
194(1)
A.2.2 Dealing with Inequality Constraints
195(2)
A.2.3 Writing a Program for Control Allocation in Standard Form
197(2)
A.2.4 Revised Standard Form with Upper Bound
199(2)
A.3 Properties of Linear Program Solutions
201(3)
A.3.1 Basic Solutions
202(1)
A.3.2 Degenerate Basic Solutions
203(1)
A.3.3 Basic Feasible Solutions
204(1)
A.4 Allocating Feasible Commands
204(9)
A.4.1 Minimizing Error to a Preferred Solution
205(4)
A.4.2 Minimizing Maximum Errors
209(3)
A.4.3 Optimizing Linear Secondary Objectives
212(1)
A.5 Building a Control Allocator for Feasible and Infeasible Solutions
213(6)
A.5.1 Dual Branch
214(1)
A.5.2 Single-branch or Mixed Optimization
215(3)
A.5.3 Reduced Program Size without Secondary Optimization
218(1)
A.6 Solvers
219(15)
A.6.1 Preprocessing
220(1)
A.6.2 Solution Algorithms
221(1)
A.6.3 Simplex Method
222(10)
A.6.4 Initialization of the Simplex Algorithm
232(2)
A.7 Afterword
234(3)
References
235(2)
B Flight Simulation
237(10)
B.1 Introduction
237(1)
B.2 Modifications
237(1)
B.2.1 Three of the top-level blocks have been left almost completely unaltered
237(1)
B.2.2 Minor modifications consist of the new Pilot and Sensors blocks
238(1)
B.3 NDI_CLAW
238(9)
B.3.1 NDI_CLAW/Rate Transition
238(1)
B.3.2 NDI_CLAW/PILOT_Mod
238(1)
B.3.3 NDI_CLAW/INPUT
239(1)
B.3.4 NDI_CLAW/MissionManager
239(1)
B.3.5 NDI_CLAW/DynamicInversionControl
240(6)
References
246(1)
C Annotated Bibliography
247(30)
References
247(30)
Index 277
Wayne Durham, Virginia Polytechnic Institute and State University, USA.

Kenneth A. Bordignon, Embry-Riddle Aeronautical University, USA.

Roger Beck, Dynamic Concepts, Inc., USA.