Atjaunināt sīkdatņu piekrišanu

E-grāmata: Aircraft Structures for Engineering Students

4.24/5 (116 ratings by Goodreads)
(Professor Emeritus, Department of Civil Engineering, Leeds University, UK (deceased))
  • Formāts: PDF+DRM
  • Sērija : Aerospace Engineering
  • Izdošanas datums: 20-Feb-2012
  • Izdevniecība: Butterworth-Heinemann Ltd
  • Valoda: eng
  • ISBN-13: 9780080969060
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 65,74 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Aerospace Engineering
  • Izdošanas datums: 20-Feb-2012
  • Izdevniecība: Butterworth-Heinemann Ltd
  • Valoda: eng
  • ISBN-13: 9780080969060
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Aircraft Structures for Engineering Students is the leading self contained aircraft structures course text. It covers all fundamental subjects, including elasticity, structural analysis, airworthiness and aeroelasticity. Now in its fifth edition, the author has revised and updated the text throughout and added new examples and exercises using Matlab(c).  Additional worked examples make the text even more accessible by showing application of concepts to airframe structures. Includes a Solutions Manual available to all adopting teachers.

* New worked examples throughout the text aid understanding and relate concepts to real world applications * Matlab examples and exercises added throughout to support use of computational tools in analysis and design

* An extensive aircraft design project case study shows the application of the major techniques in the book * More end of chapter exercises, with an accompanying Solutions Manual (for instructors only) at http://textbooks.elsevier.com



Aircraft Structures for Engineering Students is the leading self contained aircraft structures course text. It covers all fundamental subjects, including elasticity, structural analysis, airworthiness and aeroelasticity. Now in its fifth edition, the author has revised and updated the text throughout and added new examples and exercises using Matlab(c). Additional worked examples make the text even more accessible by showing application of concepts to airframe structures. Includes a Solutions Manual available to all adopting teachers.

* New worked examples throughout the text aid understanding and relate concepts to real world applications * Matlab examples and exercises added throughout to support use of computational tools in analysis and design

* An extensive aircraft design project case study shows the application of the major techniques in the book * More end of chapter exercises, with an accompanying Solutions Manual (for instructors only) at http://textbooks.elsevier.com

Recenzijas

"All who have learned from this iconic book in the past 40 years will surely hold Megsons work in high regard; essential reading for all serious students new to the subject."--The Aeronautical Journal

Preface xv
PART A FUNDAMENTALS OF STRUCTURAL ANALYSIS
Section A1 Elasticity
3(2)
Chapter 1 Basic elasticity
5(42)
1.1 Stress
5(2)
1.2 Notation for forces and stresses
7(2)
1.3 Equations of equilibrium
9(2)
1.4 Plane stress
11(1)
1.5 Boundary conditions
11(1)
1.6 Determination of stresses on inclined planes
12(3)
1.7 Principal stresses
15(2)
1.8 Mohr's circle of stress
17(5)
1.9 Strain
22(3)
1.10 Compatibility equations
25(1)
1.11 Plane strain
26(1)
1.12 Determination of strains on inclined planes
27(2)
1.13 Principal strains
29(1)
1.14 Mohr's circle of strain
30(1)
1.15 Stress-strain relationships
30(7)
1.16 Experimental measurement of surface strains
37(10)
References
43(1)
Problems
43(4)
Chapter 2 Two-dimensional problems in elasticity
47(22)
2.1 Two-dimensional problems
47(2)
2.2 Stress functions
49(1)
2.3 Inverse and semi-inverse methods
50(6)
2.4 St. Venant's principle
56(1)
2.5 Displacements
57(1)
2.6 Bending of an end-loaded cantilever
58(11)
Reference
63(1)
Problems
63(6)
Chapter 3 Torsion of solid sections
69(22)
3.1 Prandtl stress function solution
69(12)
3.2 St. Venant warping function solution
81(1)
3.3 The membrane analogy
82(2)
3.4 Torsion of a narrow rectangular strip
84(5)
References
86(1)
Problems
87(2)
Section A2 Virtual work, energy, and matrix methods
89(2)
Chapter 4 Virtual work and energy methods
91(32)
4.1 Work
91(1)
4.2 Principle of virtual work
92(14)
4.3 Applications of the principle of virtual work
106(17)
Reference
117(1)
Problems
118(5)
Chapter 5 Energy methods
123(60)
5.1 Strain energy and complementary energy
123(2)
5.2 Principle of the stationary value of the total complementary energy
125(1)
5.3 Application to deflection problems
126(9)
5.4 Application to the solution of statically indeterminate systems
135(17)
5.5 Unit load method
152(3)
5.6 Flexibility method
155(5)
5.7 Total potential energy
160(1)
5.8 Principle of the stationary value of the total potential energy
161(3)
5.9 Principle of superposition
164(1)
5.10 Reciprocal theorem
164(4)
5.11 Temperature effects
168(15)
References
171(1)
Problems
171(12)
Chapter 6 Matrix methods
183(50)
6.1 Notation
184(1)
6.2 Stiffness matrix for an elastic spring
185(1)
6.3 Stiffness matrix for two elastic springs in line
186(3)
6.4 Matrix analysis of pin-jointed frameworks
189(7)
6.5 Application to statically indeterminate frameworks
196(1)
6.6 Matrix analysis of space frames
196(2)
6.7 Stiffness matrix for a uniform beam
198(7)
6.8 Finite element method for continuum structures
205(26)
References
223(1)
Further reading
223(1)
Problems
223(8)
Section A3 Thin plate theory
231(2)
Chapter 7 Bending of thin plates
233(36)
7.1 Pure bending of thin plates
233(3)
7.2 Plates subjected to bending and twisting
236(4)
7.3 Plates subjected to a distributed transverse load
240(10)
7.4 Combined bending and in-plane loading of a thin rectangular plate
250(4)
7.5 Bending of thin plates having a small initial curvature
254(1)
7.6 Energy method for the bending of thin plates
255(12)
Further reading
263(1)
Problems
263(4)
Section A4 Structural instability
267(2)
Chapter 8 Columns
269(42)
8.1 Euler buckling of columns
269(6)
8.2 Inelastic buckling
275(4)
8.3 Effect of initial imperfections
279(3)
8.4 Stability of beams under transverse and axial loads
282(4)
8.5 Energy method for the calculation of buckling loads in columns
286(3)
8.6 Flexural-torsional buckling of thin-walled columns
289(22)
References
301(1)
Problems
302(9)
Chapter 9 Thin plates
311(34)
9.1 Buckling of thin plates
311(3)
9.2 Inelastic buckling of plates
314(2)
9.3 Experimental determination of the critical load for a flat plate
316(1)
9.4 Local instability
316(1)
9.5 Instability of stiffened panels
317(2)
9.6 Failure stress in plates and stiffened panels
319(3)
9.7 Tension field beams
322(21)
References
338(1)
Problems
338(5)
Section A5 Vibration of structures
343(2)
Chapter 10 Structural vibration
345(24)
10.1 Oscillation of mass-spring systems
345(9)
10.2 Oscillation of beams
354(5)
10.3 Approximate methods for determining natural frequencies
359(10)
Problems
362(7)
PART B Analysis of Aircraft Structures
Section B1 Principles of stressed skin construction
369(2)
Chapter 11 Materials
371(24)
11.1 Aluminum alloys
371(2)
11.2 Steel
373(1)
11.3 Titanium
374(1)
11.4 Plastics
375(1)
11.5 Glass
375(1)
11.6 Composite materials
375(2)
11.7 Properties of materials
377(18)
Problems
392(3)
Chapter 12 Structural components of aircraft
395(24)
12.1 Loads on structural components
395(2)
12.2 Function of structural components
397(5)
12.3 Fabrication of structural components
402(5)
12.4 Connections
407(10)
Reference
413(1)
Problems
413(4)
Section B2 Airworthiness and airframe loads
417(2)
Chapter 13 Airworthiness
419(6)
13.1 Factors of the safety-flight envelope
419(2)
13.2 Load factor determination
421(4)
Reference
424(1)
Chapter 14 Airframe loads
425(30)
14.1 Aircraft inertia loads
425(6)
14.2 Symmetric maneuver loads
431(5)
14.3 Normal accelerations associated with various types of maneuver
436(4)
14.4 Gust loads
440(15)
References
448(1)
Problems
448(7)
Chapter 15 Fatigue
455(26)
15.1 Safe life and fail-safe structures
455(1)
15.2 Designing against fatigue
456(1)
15.3 Fatigue strength of components
457(6)
15.4 Prediction of aircraft fatigue life
463(6)
15.5 Crack propagation
469(10)
References
476(1)
Further reading
476(1)
Problems
476(3)
Section B3 Bending, shear and torsion of thin-walled beams
479(2)
Chapter 16 Bending of open and closed, thin-walled beams
481(54)
16.1 Symmetrical bending
482(8)
16.2 Unsymmetrical bending
490(7)
16.3 Deflections due to bending
497(15)
16.4 Calculation of section properties
512(9)
16.5 Applicability of bending theory
521(1)
16.6 Temperature effects
521(14)
Reference
525(1)
Problems
525(10)
Chapter 17 Shear of beams
535(32)
17.1 General stress, strain, and displacement relationships for open and single-cell closed section thin-walled beams
535(4)
17.2 Shear of open section beams
539(9)
17.3 Shear of closed section beams
548(19)
Reference
557(1)
Problems
557(10)
Chapter 18 Torsion of beams
567(24)
18.1 Torsion of closed section beams
567(10)
18.2 Torsion of open section beams
577(14)
Problems
583(8)
Chapter 19 Combined open and closed section beams
591(12)
19.1 Bending
591(2)
19.2 Shear
593(3)
19.3 Torsion
596(7)
Problems
601(2)
Chapter 20 Structural idealization
603(26)
20.1 Principle
603(1)
20.2 Idealization of a panel
604(2)
20.3 Effect of idealization on the analysis of open and closed section beams
606(12)
20.4 Deflection of open and closed section beams
618(9)
Problems
621(6)
Section B4 Stress analysis of aircraft components
627(2)
Chapter 21 Wing spars and box beams
629(14)
21.1 Tapered wing spar
629(4)
21.2 Open and closed section beams
633(5)
21.3 Beams having variable stringer areas
638(5)
Problems
641(2)
Chapter 22 Fuselages
643(10)
22.1 Bending
643(2)
22.2 Shear
645(2)
22.3 Torsion
647(2)
22.4 Cut-outs in fuselages
649(4)
Problems
650(3)
Chapter 23 Wings
653(34)
23.1 Three-boom shell
653(1)
23.2 Bending
654(1)
23.3 Torsion
655(5)
23.4 Shear
660(7)
23.5 Shear center
667(1)
23.6 Tapered wings
667(3)
23.7 Deflections
670(1)
23.8 Cut-outs in wings
671(16)
Problems
679(8)
Chapter 24 Fuselage frames and wing ribs
687(12)
24.1 Principles of stiffener/web construction
687(5)
24.2 Fuselage frames
692(1)
24.3 Wing ribs
693(6)
Problems
697(2)
Chapter 25 Laminated composite structures
699(34)
25.1 Elastic constants of a simple lamina
699(6)
25.2 Stress-strain relationships for an orthotropic ply (macro approach)
705(9)
25.3 Thin-walled composite beams
714(17)
References
726(1)
Problems
726(5)
Section B5 Structural and loading discontinuities
731(2)
Chapter 26 Closed section beams
733(40)
26.1 General aspects
733(1)
26.2 Shear stress distribution at a built-in end of a closed section beam
734(6)
26.3 Thin-walled rectangular section beam subjected to torsion
740(8)
26.4 Shear lag
748(25)
Reference
765(1)
Problems
765(8)
Chapter 27 Open section beams
773(28)
27.1 I-section beam subjected to torsion
773(2)
27.2 Torsion of an arbitrary section beam
775(10)
27.3 Distributed torque loading
785(2)
27.4 Extension of the theory to allow for general systems of loading
787(3)
27.5 Moment couple (bimoment)
790(9)
References
793(1)
Problems
793(6)
Section B6 Introduction to aeroelasticity
799(2)
Chapter 28 Wing problems
801(24)
28.1 Types of problem
801(1)
28.2 Load distribution and divergence
802(6)
28.3 Control effectiveness and reversal
808(6)
28.4 Introduction to "flutter"
814(11)
References
821(1)
Problems
821(4)
Appendix: Design of a rear fuselage 825(28)
Index 853
T.H.G. Megson was a professor emeritus with the Department of Civil Engineering at Leeds University (UK). For Elsevier he wrote the market leading Butterworth Heinemann textbooks Aircraft Structures for Engineering Students and Introduction to Aircraft Structural Analysis (a briefer derivative of the aircraft structures book), as well as the text/ref hybrid Structural and Stress Analysis.