Atjaunināt sīkdatņu piekrišanu

E-grāmata: Aircraft Structures for Engineering Students

4.24/5 (113 ratings by Goodreads)
(Professor Emeritus, Department of Civil Engineering, Leeds University, UK (deceased))
  • Formāts: EPUB+DRM
  • Sērija : Aerospace Engineering
  • Izdošanas datums: 17-Oct-2016
  • Izdevniecība: Butterworth-Heinemann Ltd
  • Valoda: eng
  • ISBN-13: 9780081009987
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 72,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Aerospace Engineering
  • Izdošanas datums: 17-Oct-2016
  • Izdevniecība: Butterworth-Heinemann Ltd
  • Valoda: eng
  • ISBN-13: 9780081009987
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Aircraft Structures for Engineering Students, Sixth Edition is the leading self-contained aircraft structures course text. It covers all fundamental subjects, including elasticity, structural analysis, airworthiness and aeroelasticity. Now in its sixth edition, the author has expanded the book’s coverage of analysis and design of composite materials for use in aircraft, and has added new, real-world and design-based examples, along with new end-of-chapter problems of varying complexity.

  • Expanded coverage of composite materials and structures
  • New practical and design-based examples and problems throughout the text aid understanding and relate concepts to real world applications
  • Updated and additional Matlab examples and exercises support use of computational tools in analysis and design
  • Available online teaching and learning tools include downloadable Matlab code, solutions manual, and image bank of figures from the book

Papildus informācija

The leading self-contained aircraft structures course text, updated with additional content on composites and more practical and design based examples
Preface to the Sixth Edition of Aircraft Structures xv
Preface xvii
PART A FUNDAMENTALS OF STRUCTURAL ANALYSIS
Section A1 Elasticity
3(86)
Chapter 1 Basic elasticity
5(42)
1.1 Stress
5(2)
1.2 Notation for forces and stresses
7(2)
1.3 Equations of equilibrium
9(2)
1.4 Plane stress
11(1)
1.5 Boundary conditions
11(1)
1.6 Determination of stresses on inclined planes
12(3)
1.7 Principal stresses
15(2)
1.8 Mohr's circle of stress
17(5)
1.9 Strain
22(3)
1.10 Compatibility equations
25(1)
1.11 Plane strain
26(1)
1.12 Determination of strains on inclined planes
27(2)
1.13 Principal strains
29(1)
1.14 Mohr's circle of strain
30(1)
1.15 Stress--strain relationships
30(7)
1.16 Experimental measurement of surface strains
37(10)
Reference
43(1)
Problems
43(4)
Chapter 2 Two-dimensional problems in elasticity
47(22)
2.1 Two-dimensional problems
47(2)
2.2 Stress functions
49(1)
2.3 Inverse and semi-inverse methods
50(6)
2.4 St. Venant's principle
56(1)
2.5 Displacements
57(1)
2.6 Bending of an end-loaded cantilever
58(11)
Reference
63(1)
Problems
63(6)
Chapter 3 Torsion of solid sections
69(20)
3.1 Prandtl stress function solution
69(12)
3.2 St. Venant warping function solution
81(1)
3.3 The membrane analogy
82(2)
3.4 Torsion of a narrow rectangular strip
84(5)
References
86(1)
Problems
87(2)
Section A2 Virtual work, energy, and matrix methods
89(142)
Chapter 4 Virtual work and energy methods
91(32)
4.1 Work
91(1)
4.2 Principle of virtual work
92(14)
4.3 Applications of the principle of virtual work
106(17)
Reference
117(1)
Problems
118(5)
Chapter 5 Energy methods
123(60)
5.1 Strain energy and complementary energy
123(2)
5.2 Principle of the stationary value of the total complementary energy
125(1)
5.3 Application to deflection problems
126(9)
5.4 Application to the solution of statically indeterminate systems
135(17)
5.5 Unit load method
152(3)
5.6 Flexibility method
155(5)
5.7 Total potential energy
160(1)
5.8 Principle of the stationary value of the total potential energy
161(3)
5.9 Principle of superposition
164(1)
5.10 Reciprocal theorem
164(4)
5.11 Temperature effects
168(15)
References
171(1)
Further reading
171(1)
Problems
171(12)
Chapter 6 Matrix methods
183(48)
6.1 Notation
184(1)
6.2 Stiffness matrix for an elastic spring
185(1)
6.3 Stiffness matrix for two elastic springs in line
186(3)
6.4 Matrix analysis of pin-jointed frameworks
189(7)
6.5 Application to statically indeterminate frameworks
196(1)
6.6 Matrix analysis of space frames
196(2)
6.7 Stiffness matrix for a uniform beam
198(7)
6.8 Finite element method for continuum structures
205(26)
References
223(1)
Further reading
223(1)
Problems
223(8)
Section A3 Thin plate theory
231(36)
Chapter 7 Bending of thin plates
233(34)
7.1 Pure bending of thin plates
233(3)
7.2 Plates subjected to bending and twisting
236(4)
7.3 Plates subjected to a distributed transverse load
240(10)
7.4 Combined bending and in-plane loading of a thin rectangular plate
250(4)
7.5 Bending of thin plates having a small initial curvature
254(1)
7.6 Energy method for the bending of thin plates
255(12)
Further reading
263(1)
Problems
263(4)
Section A4 Structural instability
267(78)
Chapter 8 Columns
269(42)
8.1 Euler buckling of columns
269(6)
8.2 Inelastic buckling
275(5)
8.3 Effect of initial imperfections
280(3)
8.4 Stability of beams under transverse and axial loads
283(3)
8.5 Energy method for the calculation of buckling loads in columns
286(4)
8.6 Flexural--torsional buckling of thin-walled columns
290(21)
References
302(1)
Problems
302(9)
Chapter 9 Thin plates
311(34)
9.1 Buckling of thin plates
311(3)
9.2 Inelastic buckling of plates
314(2)
9.3 Experimental determination of the critical load for a flat plate
316(1)
9.4 Local instability
316(1)
9.5 Instability of stiffened panels
317(2)
9.6 Failure stress in plates and stiffened panels
319(4)
9.7 Tension field beams
323(22)
References
339(1)
Problems
340(5)
Section A5 Vibration of structures
345(26)
Chapter 10 Structural vibration
347(24)
10.1 Oscillation of mass-spring systems
347(9)
10.2 Oscillation of beams
356(5)
10.3 Approximate methods for determining natural frequencies
361(10)
Problems
364(7)
PART B ANALYSIS OF AIRCRAFT STRUCTURES
Section B1 Principles of stressed skin construction
371(48)
Chapter 11 Materials
373(24)
11.1 Aluminum alloys
373(2)
11.2 Steel
375(1)
11.3 Titanium
376(1)
11.4 Plastics
377(1)
11.5 Glass
377(1)
11.6 Composite materials
377(2)
11.7 Properties of materials
379(18)
Problems
394(3)
Chapter 12 Structural components of aircraft
397(22)
12.1 Loads on structural components
397(2)
12.2 Function of structural components
399(5)
12.3 Fabrication of structural components
404(5)
12.4 Connections
409(10)
Reference
415(1)
Problems
415(4)
Section B2 Airworthiness and airframe loads
419(62)
Chapter 13 Airworthiness
421(6)
13.1 Factors of safety-flight envelope
421(2)
13.2 Load factor determination
423(4)
Reference
426(1)
Problems
426(1)
Chapter 14 Airframe loads
427(30)
14.1 Aircraft inertia loads
427(6)
14.2 Symmetric maneuver loads
433(5)
14.3 Normal accelerations associated with various types of maneuver
438(4)
14.4 Gust loads
442(15)
References
450(1)
Problems
450(7)
Chapter 15 Fatigue
457(24)
15.1 Safe life and fail-safe structures
457(1)
15.2 Designing against fatigue
458(1)
15.3 Fatigue strength of components
459(6)
15.4 Prediction of aircraft fatigue life
465(6)
15.5 Crack propagation
471(10)
References
478(1)
Further reading
478(1)
Problems
478(3)
Section B3 Bending, shear and torsion of thin-walled beams
481(148)
Chapter 16 Bending of open and closed, thin-walled beams
483(54)
16.1 Symmetrical bending
484(8)
16.2 Unsymmetrical bending
492(7)
16.3 Deflections due to bending
499(15)
16.4 Calculation of section properties
514(9)
16.5 Applicability of bending theory
523(1)
16.6 Temperature effects
523(14)
Reference
527(1)
Problems
527(10)
Chapter 17 Shear of beams
537(32)
17.1 General stress, strain, and displacement relationships for open and single-cell closed section thin-walled beams
537(4)
17.2 Shear of open section beams
541(9)
17.3 Shear of closed section beams
550(19)
Reference
559(1)
Problems
559(10)
Chapter 18 Torsion of beams
569(24)
18.1 Torsion of closed section beams
569(10)
18.2 Torsion of open section beams
579(14)
Problems
585(8)
Chapter 19 Combined open and closed section beams
593(12)
19.1 Bending
593(2)
19.2 Shear
595(3)
19.3 Torsion
598(7)
Problems
603(2)
Chapter 20 Structural idealization
605(24)
20.1 Principle
605(1)
20.2 Idealization of a panel
606(2)
20.3 Effect of idealization on the analysis of open and closed section beams
608(12)
20.4 Deflection of open and closed section beams
620(9)
Problems
623(6)
Section B4 Stress analysis of aircraft components
629(132)
Chapter 21 Wing spars and box beams
631(18)
21.1 Tapered wing spar
631(4)
21.2 Open and closed section beams
635(5)
21.3 Beams having variable stringer areas
640(9)
Problems
645(4)
Chapter 22 Fuselages
649(14)
22.1 Bending
649(2)
22.2 Shear
651(2)
22.3 Torsion
653(2)
22.4 Cut-outs in fuselages
655(8)
Problems
660(3)
Chapter 23 Wings
663(34)
23.1 Three-boom shell
663(1)
23.2 Bending
664(1)
23.3 Torsion
665(5)
23.4 Shear
670(7)
23.5 Shear center
677(1)
23.6 Tapered wings
677(3)
23.7 Deflections
680(1)
23.8 Cut-outs in wings
681(16)
Problems
689(8)
Chapter 24 Fuselage frames and wing ribs
697(12)
24.1 Principles of stiffener/web construction
697(5)
24.2 Fuselage frames
702(1)
24.3 Wing ribs
703(6)
Problems
707(2)
Chapter 25 Laminated composite structures
709(52)
25.1 Elastic constants of a simple lamina
709(6)
25.2 Stress--strain relationships for an orthotropic ply (macro approach)
715(9)
25.3 Laminates
724(16)
25.4 Thin-walled composite beams
740(21)
References
753(1)
Problems
753(8)
Section B5 Structural and loading discontinuities
761(70)
Chapter 26 Closed section beams
763(42)
26.1 General aspects
763(1)
26.2 Shear stress distribution at a built-in end of a closed section beam
764(6)
26.3 Thin-walled rectangular section beam subjected to torsion
770(8)
26.4 Shear lag
778(27)
Reference
795(1)
Problems
795(10)
Chapter 27 Open section beams
805(26)
27.1 I-section beam subjected to torsion
805(2)
27.2 Torsion of an arbitrary section beam
807(10)
27.3 Distributed torque loading
817(2)
27.4 Extension of the theory to allow for general systems of loading
819(3)
27.5 Moment couple (bimoment)
822(9)
References
825(1)
Problems
825(6)
Section B6 Introduction to aeroelasticity
831(26)
Chapter 28 Wing problems
833(24)
28.1 Types of problem
833(1)
28.2 Load distribution and divergence
834(6)
28.3 Control effectiveness and reversal
840(6)
28.4 Introduction to "flutter"
846(11)
References
853(1)
Problems
853(4)
Appendix: Design of a rear fuselage 857(28)
Index 885
T.H.G. Megson was a professor emeritus with the Department of Civil Engineering at Leeds University (UK). For Elsevier he wrote the market leading Butterworth Heinemann textbooks Aircraft Structures for Engineering Students and Introduction to Aircraft Structural Analysis (a briefer derivative of the aircraft structures book), as well as the text/ref hybrid Structural and Stress Analysis.