Atjaunināt sīkdatņu piekrišanu

E-grāmata: Aircraft Structures for Engineering Students

4.24/5 (112 ratings by Goodreads)
(Professor Emeritus, Department of Civil Engineering, Leeds University, UK (deceased))
  • Formāts: EPUB+DRM
  • Sērija : Aerospace Engineering
  • Izdošanas datums: 11-Aug-2021
  • Izdevniecība: Butterworth-Heinemann Inc
  • Valoda: eng
  • ISBN-13: 9780323902113
  • Formāts - EPUB+DRM
  • Cena: 72,22 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Aerospace Engineering
  • Izdošanas datums: 11-Aug-2021
  • Izdevniecība: Butterworth-Heinemann Inc
  • Valoda: eng
  • ISBN-13: 9780323902113

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Aircraft Structures for Engineering Students, Seventh Edition, is the leading self-contained aircraft structures course text suitable for one or more semesters. It covers all fundamental subjects, including elasticity, structural analysis, airworthiness and aeroelasticity. Now in its seventh edition, the author has continued to expand the book’s coverage of analysis and design of composite materials for use in aircraft and has added more real-world and design-based examples, along with new end-of-chapter problems of varying complexity.
  • Retains its hallmark comprehensive coverage of aircraft structural analysis
  • New practical and design-based examples and problems throughout the text aid understanding and relate concepts to real world applications
  • Updated and additional Matlab examples and exercises support use of computational tools in analysis and design
  • Available online teaching and learning tools include downloadable Matlab code, solutions manual, and image bank of figures from the book
Preface to the Seventh Edition of Aircraft Structures xv
Part A Fundamentals Of Structural Analysis
Section A1 Elasticity
3(94)
Chapter 1 Basic elasticity
5(48)
1.1 Stress
5(2)
1.2 Notation for forces and stresses
7(2)
1.3 Equations of equilibrium
9(2)
1.4 Plane stress
11(1)
1.5 Boundary conditions
11(1)
1.6 Determination of stresses on inclined planes
12(4)
1.7 Principal stresses
16(2)
1.8 Mohr's circle of stress
18(6)
1.9 Strain
24(4)
1.10 Compatibility equations
28(1)
1.11 Plane strain
29(1)
1.12 Determination of strains on inclined planes
29(3)
1.13 Principal strains
32(1)
1.14 Mohr's circle of strain
32(1)
1.15 Stress-strain relationships
32(10)
1.16 Experimental measurement of surface strains
42(6)
Reference
48(1)
Further reading
48(1)
Problems
48(5)
Chapter 2 Two-dimensional problems in elasticity
53(22)
2.1 Two-dimensional problems
53(2)
2.2 Stress functions
55(1)
2.3 Inverse and semi-inverse methods
56(7)
2.4 St. Venant's principle
63(1)
2.5 Displacements
64(1)
2.6 Bending of an end-loaded cantilever
64(6)
Reference
70(1)
Problems
70(5)
Chapter 3 Torsion of solid sections
75(22)
3.1 Prandtl stress function solution
75(13)
3.2 St. Venant warping function solution
88(1)
3.3 The membrane analogy
89(2)
3.4 Torsion of a narrow rectangular strip
91(3)
References
94(1)
Problems
94(3)
Section A2 Virtual work, energy, and matrix methods
97(146)
Chapter 4 Virtual work and energy methods
99(32)
4.1 Work
99(1)
4.2 Principle of virtual work
100(14)
4.3 Applications of the principle of virtual work
114(11)
Reference
125(1)
Problems
126(5)
Chapter 5 Energy methods
131(62)
5.1 Strain energy and complementary energy
131(2)
5.2 Principle of the stationary value of the total complementary energy
133(1)
5.3 Application to deflection problems
134(10)
5.4 Application to the solution of statically indeterminate systems
144(18)
5.5 Unit load method
162(2)
5.6 Flexibility method
164(5)
5.7 Total potential energy
169(1)
5.8 Principle of the stationary value of the total potential energy
170(4)
5.9 Principle of superposition
174(1)
5.10 Reciprocal theorem
174(4)
5.11 Temperature effects
178(2)
References
180(1)
Further reading
180(1)
Problems
181(12)
Chapter 6 Matrix methods
193(50)
6.1 Notation
194(1)
6.2 Stiffness matrix for an elastic spring
195(1)
6.3 Stiffness matrix for two elastic springs in line
196(3)
6.4 Matrix analysis of pin-jointed frameworks
199(8)
6.5 Application to statically indeterminate frameworks
207(1)
6.6 Matrix analysis of space frames
207(2)
6.7 Stiffness matrix for a uniform beam
209(7)
6.8 Finite element method for continuum structures
216(17)
References
233(1)
Further reading
234(1)
Problems
234(9)
Section A3 Thin plate theory
243(38)
Chapter 7 Bending of thin plates
245(36)
7.1 Pure bending of thin plates
245(3)
7.2 Plates subjected to bending and twisting
248(4)
7.3 Plates subjected to a distributed transverse load
252(11)
7.4 Combined bending and in-plane loading of a thin rectangular plate
263(4)
7.5 Bending of thin plates having a small initial curvature
267(1)
7.6 Energy method for the bending of thin plates
267(9)
Further reading
276(1)
Problems
276(5)
Section A4 Structural instability
281(88)
Chapter 8 Columns
283(48)
8.1 Euler buckling of columns
283(8)
8.2 Inelastic buckling
291(5)
8.3 Effect of initial imperfections
296(4)
8.4 Stability of beams under transverse and axial loads
300(4)
8.5 Energy method for the calculation of buckling loads in columns
304(4)
8.6 Flexural-torsional buckling of thin-walled columns
308(12)
References
320(1)
Problems
320(11)
Chapter 9 Thin plates
331(38)
9.1 Buckling of thin plates
331(4)
9.2 Inelastic buckling of plates
335(2)
9.3 Experimental determination of the critical load for a flat plate
337(1)
9.4 Local instability
337(1)
9.5 Instability of stiffened panels
338(2)
9.6 Failure stress in plates and stiffened panels
340(7)
9.7 Tension field beams
347(15)
References
362(1)
Problems
363(6)
Section A5 Vibration of structures
369(26)
Chapter 10 Structural vibration
371(24)
10.1 Oscillation of mass-spring systems
371(10)
10.2 Oscillation of beams
381(5)
10.3 Approximate methods for determining natural frequencies
386(3)
Problems
389(6)
Part B Analysis Of Aircraft Structures
Section B1 Principles of stressed skin construction
395(52)
Chapter 11 Materials
397(24)
11.1 Aluminum alloys
397(2)
11.2 Steel
399(1)
11.3 Titanium
400(1)
11.4 Polymers
401(1)
11.5 Glass
401(1)
11.6 Ceramics
401(1)
11.7 Composite materials
402(1)
11.8 Properties of materials
403(15)
Problems
418(3)
Chapter 12 Structural components of aircraft and spacecraft
421(26)
12.1 Structural components: Aircraft
421(12)
12.2 Structural components: Spacecraft
433(3)
12.3 Connections
436(7)
References
443(1)
Problems
444(3)
Section B2 Airworthiness and airframe loads
447(62)
Chapter 13 Airworthiness
449(6)
13.1 Factors of safety: Flight envelope
449(2)
13.2 Load factor determination
451(2)
13.3 Airworthiness: Spacecraft
453(1)
Reference
454(1)
Problems
454(1)
Chapter 14 Airframe loads
455(30)
14.1 Aircraft inertia loads
455(6)
14.2 Symmetric maneuver loads
461(5)
14.3 Normal accelerations associated with various types of maneuver
466(4)
14.4 Gust loads
470(8)
14.5 Design loads: Spacecraft
478(1)
References
478(1)
Problems
479(6)
Chapter 15 Fatigue
485(24)
15.1 Safe life and fail-safe structures
485(1)
15.2 Designing against fatigue
486(1)
15.3 Fatigue strength of components
487(6)
15.4 Prediction of aircraft fatigue life
493(6)
15.5 Crack propagation
499(7)
References
506(1)
Further reading
506(1)
Problems
507(2)
Section B3 Bending, shear, and torsion of thin-walled beams
509(160)
Chapter 16 Bending of open and closed thin-walled beams
511(62)
16.1 Symmetrical bending
512(9)
16.2 Unsymmetrical bending
521(8)
16.3 Deflections due to bending
529(20)
16.4 Calculation of section properties
549(10)
16.5 Applicability of bending theory
559(1)
16.6 Temperature effects
559(4)
Reference
563(1)
Problems
563(10)
Chapter 17 Shear of beams
573(32)
17.1 General stress, strain, and displacement relationships for open and single-cell closed section thin-walled beams
573(4)
17.2 Shear of open section beams
577(9)
17.3 Shear of closed section beams
586(9)
Reference
595(1)
Problems
595(10)
Chapter 18 Torsion of beams
605(24)
18.1 Torsion of closed section beams
605(10)
18.2 Torsion of open section beams
615(6)
Problems
621(8)
Chapter 19 Combined open and closed section beams
629(12)
19.1 Bending
629(2)
19.2 Shear
631(3)
19.3 Torsion
634(5)
Problems
639(2)
Chapter 20 Structural idealization
641(28)
20.1 Principle
641(1)
20.2 Idealization of a panel
642(4)
20.3 Effect of idealization on the analysis of open and closed section beams
646(13)
20.4 Deflection of open and closed section beams
659(3)
Problems
662(7)
Section B4 Stress analysis of aircraft and spacecraft components
669(146)
Chapter 21 Wing spars and box beams
671(18)
21.1 Tapered wing spar
671(4)
21.2 Open and closed section beams
675(5)
21.3 Beams having variable stringer areas
680(5)
Problems
685(4)
Chapter 22 Fuselages
689(22)
22.1 Bending
689(2)
22.2 Shear
691(2)
22.3 Torsion
693(2)
22.4 Pressurized fuselages
695(7)
22.5 Cut-outs in fuselages
702(5)
Reference
707(1)
Problems
707(4)
Chapter 23 Wings
711(34)
23.1 Three-boom shell
711(1)
23.2 Bending
712(2)
23.3 Torsion
714(4)
23.4 Shear
718(7)
23.5 Shear center
725(1)
23.6 Tapered wings
725(3)
23.7 Deflections
728(1)
23.8 Cut-outs in wings
729(8)
Problems
737(8)
Chapter 24 Fuselage frames and wing ribs
745(12)
24.1 Principles of stiffener/web construction
745(5)
24.2 Fuselage frames
750(1)
24.3 Wing ribs
751(4)
Problems
755(2)
Chapter 25 Spacecraft
757(6)
25.1 Natural frequencies
757(1)
25.2 Axial stress
758(1)
25.3 Stability
759(2)
Reference
761(1)
Problems
761(2)
Chapter 26 Laminated composite structures
763(52)
26.1 Elastic constants of a simple lamina
763(6)
26.2 Stress-strain relationships for an orthotropic ply (macro approach)
769(9)
26.3 Laminates
778(17)
26.4 Thin-walled composite beams
795(13)
References
808(1)
Problems
808(7)
Section B5 Structural and loading discontinuities
815(70)
Chapter 27 Closed section beams
817(42)
27.1 General aspects
817(1)
27.2 Shear stress distribution at a built-in end of a closed section beam
818(6)
27.3 Thin-walled rectangular section beam subjected to torsion
824(8)
27.4 Shear lag
832(17)
Reference
849(1)
Problems
849(10)
Chapter 28 Open section beams
859(26)
28.1 I-Section beam subjected to torsion
859(2)
28.2 Torsion of an arbitrary section beam
861(10)
28.3 Distributed torque loading
871(2)
28.4 Extension of the theory to allow for general systems of loading
873(3)
28.5 Moment couple (bimoment)
876(3)
References
879(1)
Problems
879(6)
Section B6 Introduction to aeroelasticity
885(26)
Chapter 29 Wing problems
887(24)
29.1 Types of problem
887(1)
29.2 Load distribution and divergence
888(6)
29.3 Control effectiveness and reversal
894(6)
29.4 Introduction to "flutter"
900(7)
References
907(1)
Problems
907(4)
Appendix: Design of a rear fuselage 911(28)
Index 939
T.H.G. Megson was a professor emeritus with the Department of Civil Engineering at Leeds University (UK). For Elsevier he wrote the market leading Butterworth Heinemann textbooks Aircraft Structures for Engineering Students and Introduction to Aircraft Structural Analysis (a briefer derivative of the aircraft structures book), as well as the text/ref hybrid Structural and Stress Analysis.