Atjaunināt sīkdatņu piekrišanu

E-grāmata: Algebraic Elements of Graphs

  • Formāts: 422 pages
  • Izdošanas datums: 11-Sep-2017
  • Izdevniecība: De Gruyter
  • ISBN-13: 9783110480757
  • Formāts - EPUB+DRM
  • Cena: 175,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 422 pages
  • Izdošanas datums: 11-Sep-2017
  • Izdevniecība: De Gruyter
  • ISBN-13: 9783110480757

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The book establishes algebraic representation of graphs to investigate combinatorial structures via local symmetries. Topological, combinatorial and algebraic classifications are distinguished by invariants in polynomial type and algorithms are designed to determine all such classifications with complexity analysis. Being a summarization of author"s original work on graph embedding, the book is an essential reference for graph theory researchers.

Table of Content:PrefaceChapter 1 Abstract Graphs1.1 Graphs and Networks1.2 Surfaces1.3 Embeddings1.4 Abstract Representation1.5 NotesChapter 2 Abstract Maps2.1 Ground Sets2.2 Basic Permutations2.3 Conjugate Axiom2.4 Transitive Axiom2.5 Included Angles2.6 NotesChapter 3 Duality3.1 Dual Maps3.2 Deletion of an Edge3.3 Addition of an Edge3.4 Basic Transformation3.5 NotesChapter 4 Orientability4.1 Orientation4.2 Basic Equivalence4.3 Euler Characteristic4.4 Pattern Examples4.5 NotesChapter 5 Orientable Maps5.1 Butterflies5.2 Simplified Butterflies5.3 Reduced Rules5.4 Orientable Principles5.5 Orientable Genus5.6 NotesChapter 6 Nonorientable Maps6.1 Barflies6.2 Simplified Barflies6.3 Nonorientable Rules6.4 Nonorientable Principles6.5 Nonorientable Genus6.6 NotesChapter 7 Isomorphisms of Maps7.1 Commutativity7.2 Isomorphism Theorem7.3 Recognition7.4 Justification7.5 Pattern Examples7.6 NotesChapter 8 Asymmetrization8.1 Automorphisms8.2 Upp

er Bounds of Group Order8.3 Determination of the Group8.4 Rootings8.5 NotesChapter 9 Asymmetrized Petal Bundles9.1 Orientable Petal Bundles9.2 Planar Pedal Bundles9.3 Nonorientable Pedal Bundles9.4 The Number of Pedal Bundles9.5 NotesChapter 10 Asymmetrized Maps10.1 Orientable Equation10.2 Planar Rooted Maps10.3 Nonorientable Equation10.4 Gross Equation10.5 The Number of Rooted Maps10.6 NotesChapter 11 Maps Within Symmetry11.1 Symmetric Relation11.2 An Application11.3 Symmetric Principle11.4 General Examples11.5 NotesChapter 12 Genus Polynomials12.1 Associate Surfaces12.2 Layer Division of a Surface12.3 Handle Polynomials12.4 Crosscap Polynomials12.5 NotesChapter 13 Census with Partitions13.1 Planted Trees13.2 Hamiltonian Cubic Maps13.3 Halin Maps13.4 Biboundary Inner Rooted Maps13.5 General Maps13.6 Pan-Flowers13.7 NotesChapter 14 Equations with Partitions14.1 The Meson Functional14.2 General Maps on the Sphere14.3 Nonseparable Maps on the

Sphere14.4 Maps Without Cut-Edge on Surfaces14.5 Eulerian Maps on the Sphere14.6 Eulerian Maps on Surfaces14.7 NotesChapter 15 Upper Maps of a Graph15.1 Semi-Automorphisms on a Graph15.2 Automorphisms on a Graph15.3 Relationships15.4 Upper Maps with Symmetry15.5 Via Asymmetrized Upper Maps15.6 NotesChapter 16 Genera of Graphs16.1 A Recursion Theorem16.2 Maximum Genus16.3 Minimum Genus16.4 Average Genus16.5 Thickness16.6 Interlacedness16.7 NotesChapter 17 Isogemial Graphs17.1 Basic Concepts17.2 Two Operations17.3 Isogemial Theorem17.4 Nonisomorphic Isogemial Graphs17.5 NotesChapter 18 Surface Embeddability18.1 Via Tree-Travels18.2 Via Homology18.3 Via Joint Trees18.4 Via Configurations18.5 NotesAppendix 1 Concepts of Polyhedra, Surfaces, Embeddings and MapsAppendix 2 Table of Genus Polynomials for Embeddings and Maps of Small SizeAppendix 3 Atlas of Rooted and Unrooted Maps for Small GraphsBibliography
Yanpei Liu, Beijing Jiaotong University, Beijing, China