Atjaunināt sīkdatņu piekrišanu

E-grāmata: Algebraic Geometry over $C^\infty $-Rings

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 103,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

If $X$ is a manifold then the $\mathbb R$-algebra $C^\infty (X)$ of smooth functions $c:X\rightarrow \mathbb R$ is a $C^\infty $-ring. That is, for each smooth function $f:\mathbb R^n\rightarrow \mathbb R$ there is an $n$-fold operation $\Phi _f:C^\infty (X)^n\rightarrow C^\infty (X)$ acting by $\Phi _f:(c_1,\ldots ,c_n)\mapsto f(c_1,\ldots ,c_n)$, and these operations $\Phi _f$ satisfy many natural identities. Thus, $C^\infty (X)$ actually has a far richer structure than the obvious $\mathbb R$-algebra structure.

The author explains the foundations of a version of algebraic geometry in which rings or algebras are replaced by $C^\infty $-rings. As schemes are the basic objects in algebraic geometry, the new basic objects are $C^\infty $-schemes, a category of geometric objects which generalize manifolds and whose morphisms generalize smooth maps. The author also studies quasicoherent sheaves on $C^\infty $-schemes, and $C^\infty $-stacks, in particular Deligne-Mumford $C^\infty$-stacks, a 2-category of geometric objects generalizing orbifolds.

Many of these ideas are not new: $C^\infty$-rings and $C^\infty $-schemes have long been part of synthetic differential geometry. But the author develops them in new directions. In earlier publications, the author used these tools to define d-manifolds and d-orbifolds, ``derived'' versions of manifolds and orbifolds related to Spivak's ``derived manifolds''.
Chapter 1 Introduction
1(4)
Chapter 2 C∞-rings
5(12)
2.1 Two definitions of C∞-ring
5(2)
2.2 C∞-rings as commutative R-algebras, and ideals
7(1)
2.3 Local C∞-rings, and localization
8(2)
2.4 Fair C∞-rings
10(3)
2.5 Pushouts of C∞-rings
13(2)
2.6 Flat ideals
15(2)
Chapter 3 The C∞-ring C∞(X) of a manifold X
17(4)
Chapter 4 C∞-ringed spaces and C∞-schemes
21(24)
4.1 Some basic topology
21(1)
4.2 Sheaves on topological spaces
22(2)
4.3 C∞-ringed spaces and local C∞-ringed spaces
24(2)
4.4 The spectrum functor
26(5)
4.5 Affine C∞-schemes and C∞-schemes
31(2)
4.6 Complete C∞-rings
33(3)
4.7 Partitions of unity
36(2)
4.8 A criterion for affine C∞-schemes
38(3)
4.9 Quotients of C∞-schemes by finite groups
41(4)
Chapter 5 Modules over C∞-rings and C∞-schemes
45(16)
5.1 Modules over C∞-rings
45(1)
5.2 Cotangent modules of C∞-rings
46(4)
5.3 Sheaves of Ox-modules on a C∞-ringed space (X, Ox)
50(1)
5.4 Sheaves on affine C∞-schemes, MSpec and γ
51(5)
5.5 Complete modules over C∞-rings
56(2)
5.6 Cotangent sheaves of C∞-schemes
58(3)
Chapter 6 C∞-stacks
61(10)
6.1 C∞-stacks
61(2)
6.2 Properties of 1-morphisms of C∞-stacks
63(2)
6.3 Open C∞-substacks and open covers
65(1)
6.4 The underlying topological space of a C∞-stack
66(2)
6.5 Gluing C∞-stacks by equivalences
68(3)
Chapter 7 Deligne-Mumford C∞-stacks
71(18)
7.1 Quotient C∞-stacks, 1-morphisms, and 2-morphisms
71(2)
7.2 Deligne-Mumford C∞-stacks
73(3)
7.3 Characterizing Deligne-Mumford C∞-stacks
76(3)
7.4 Quotient C∞-stacks, 1- and 2-morphisms as local models for objects, 1- and 2-morphisms in DMC∞Sta
79(5)
7.5 Effective Deligne-Mumford C∞-stacks
84(2)
7.6 Orbifolds as Deligne-Mumford C∞-stacks
86(3)
Chapter 8 Sheaves on Deligne-Mumford C∞-stacks
89(10)
8.1 Quasicoherent sheaves
89(2)
8.2 Writing sheaves in terms of a groupoid presentation
91(2)
8.3 Pullback of sheaves as a weak 2-functor
93(2)
8.4 Cotangent sheaves of Deligne-Mumford C∞-stacks
95(4)
Chapter 9 Orbifold strata of C∞-stacks
99(18)
9.1 The definition of orbifold strata Xγ...,Xγo
100(7)
9.2 Lifting 1- and 2-morphisms to orbifold strata
107(1)
9.3 Orbifold strata of quotient C∞-stacks {X/G}
108(1)
9.4 Sheaves on orbifold strata
109(4)
9.5 Sheaves on orbifold strata of quotients [ X/G
113(1)
9.6 Cotangent sheaves of orbifold strata
114(3)
Appendix A Background material on stacks
117(14)
A.1 Introduction to 2-categories
117(4)
A.2 Grothendieck topologies, sites, prestacks, and stacks
121(2)
A.3 Descent theory on a site
123(1)
A.4 Properties of 1-morphisms
124(2)
A.5 Geometric stacks, and stacks associated to groupoids
126(5)
Bibliography 131(4)
Glossary of Notation 135(2)
Index 137
Dominic Joyce, University of Oxford, United Kingdom.