Atjaunināt sīkdatņu piekrišanu

Algebraic K-Theory 1st ed. Softcover of orig. ed. 1995 [Mīkstie vāki]

  • Formāts: Paperback / softback, 440 pages, height x width: 235x155 mm, weight: 688 g, VIII, 440 p., 1 Paperback / softback
  • Sērija : Mathematics and Its Applications 311
  • Izdošanas datums: 15-Dec-2010
  • Izdevniecība: Springer
  • ISBN-10: 9048144795
  • ISBN-13: 9789048144792
  • Mīkstie vāki
  • Cena: 136,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 160,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 440 pages, height x width: 235x155 mm, weight: 688 g, VIII, 440 p., 1 Paperback / softback
  • Sērija : Mathematics and Its Applications 311
  • Izdošanas datums: 15-Dec-2010
  • Izdevniecība: Springer
  • ISBN-10: 9048144795
  • ISBN-13: 9789048144792
Algebraic K-theory is a modern branch of algebra which has many important applications in fundamental areas of mathematics connected with algebra, topology, algebraic geometry, functional analysis and algebraic number theory. Methods of algebraic K-theory are actively used in algebra and related fields, achieving interesting results.
This book presents the elements of algebraic K-theory, based essentially on the fundamental works of Milnor, Swan, Bass, Quillen, Karoubi, Gersten, Loday and Waldhausen. It includes all principal algebraic K-theories, connections with topological K-theory and cyclic homology, applications to the theory of monoid and polynomial algebras and in the theory of normed algebras.
This volume will be of interest to graduate students and research mathematicians who want to learn more about K-theory.

Papildus informācija

Springer Book Archives
I. Classical Algebraic K-functors.- II. Higher K-functors.- III. Properties of algebraic K-functors.- IV. Relations between algebraic K-theories.- V. Relation between algebraic and topological K-theories.- VI. The problem of Serre for polynomial and monoid algebras.- VII. Connection with cyclic homology.- References.