Atjaunināt sīkdatņu piekrišanu

E-grāmata: Algebraic Number Theory

(University of Calgary, Alberta, Canada)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 70,13 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Bringing the material up to date to reflect modern applications, Algebraic Number Theory, Second Edition has been completely rewritten and reorganized to incorporate a new style, methodology, and presentation. This edition focuses on integral domains, ideals, and unique factorization in the first chapter; field extensions in the second chapter; and class groups in the third chapter. Applications are now collected in chapter four and at the end of chapter five, where primality testing is highlighted as an application of the KroneckerWeber theorem. In chapter five, the sections on ideal decomposition in number fields have been more evenly distributed. The final chapter continues to cover reciprocity laws.

New to the Second Edition











Reorganization of all chapters More complete and involved treatment of Galois theory A study of binary quadratic forms and a comparison of the ideal and form class groups More comprehensive section on Pollards cubic factoring algorithm More detailed explanations of proofs, with less reliance on exercises, to provide a sound understanding of challenging material

The book includes mini-biographies of notable mathematicians, convenient cross-referencing, a comprehensive index, and numerous exercises. The appendices present an overview of all the concepts used in the main text, an overview of sequences and series, the Greek alphabet with English transliteration, and a table of Latin phrases and their English equivalents.

Suitable for a one-semester course, this accessible, self-contained text offers broad, in-depth coverage of numerous applications. Readers are lead at a measured pace through the topics to enable a clear understanding of the pinnacles of algebraic number theory.

Recenzijas

This is an introductory text in algebraic number theory that has good coverage . This second edition is completely reorganized and rewritten from the first edition. Very Good Features: (1) The applications are not limited to Diophantine equations, as in many books, but cover a wide range, including factorization into primes, primality testing, and the higher reciprocity laws. (2) The book has a large number of mini-biographies of the number theorists whose work is being discussed. MAA Reviews, April 2011 This book is in the MAA's basic library list. The Basic Library List Committee considers this book essential for undergraduate mathematics libraries.

Praise for the First EditionThis is a remarkable book that will be a valuable reference for many people, including me. The book shows great care in preparation, and the ample details and motivation will be appreciated by lots of students. The solid punches at the end of each chapter will be appreciated by everybody. It deserves success with many adoptions as a text. Irving Kaplansky, Mathematical Sciences Research Institute, Berkeley, California, USA

An extremely well-written and clear presentation of algebraic number theory suitable for beginning graduate students. The many exercises, applications, and references are a very valuable feature of the book. Kenneth Williams, Carleton University, Ottawa, Ontario, Canada

This is a unique book that will be influential. John Brillhart, University of Arizona, Tucson, USA

Preface ix
About the Author xiii
Suggested Course Outlines xv
1 Integral Domains, Ideals, and Unique Factorization
1(54)
1.1 Integral Domains
1(6)
1.2 Factorization Domains
7(8)
1.3 Ideals
15(5)
1.4 Noetherian and Principal Ideal Domains
20(5)
1.5 Dedekind Domains
25(10)
1.6 Algebraic Numbers and Number Fields
35(9)
1.7 Quadratic Fields
44(11)
2 Field Extensions
55(32)
2.1 Automorphisms, Fixed Points, and Galois Groups
55(10)
2.2 Norms and Traces
65(5)
2.3 Integral Bases and Discriminants
70(13)
2.4 Norms of Ideals
83(4)
3 Class Groups
87(52)
3.1 Binary Quadratic Forms
87(9)
3.2 Forms and Ideals
96(12)
3.3 Geometry of Numbers and the Ideal Class Group
108(14)
3.4 Units in Number Rings
122(8)
3.5 Dirichlet's Unit Theorem
130(9)
4 Applications: Equations and Sieves
139(42)
4.1 Prime Power Representation
139(6)
4.2 Bachet's Equation
145(4)
4.3 The Fermat Equation
149(16)
4.4 Factoring
165(9)
4.5 The Number Field Sieve
174(7)
5 Ideal Decomposition in Number Fields
181(80)
5.1 Inertia, Ramification, and Splitting of Prime Ideals
181(15)
5.2 The Different and Discriminant
196(17)
5.3 Ramification
213(8)
5.4 Galois Theory and Decomposition
221(12)
5.5 Kummer Extensions and Class-Field Theory
233(11)
5.6 The Kronecker-Weber Theorem
244(11)
5.7 An Application---Primality Testing
255(6)
6 Reciprocity Laws
261(58)
6.1 Cubic Reciprocity
261(17)
6.2 The Biquadratic Reciprocity Law
278(16)
6.3 The Stickelberger Relation
294(17)
6.4 The Eisenstein Reciprocity Law
311(8)
Appendix A Abstract Algebra 319(26)
Appendix B Sequences and Series 345(10)
Appendix C The Greek Alphabet 355(2)
Appendix D Latin Phrases 357(2)
Bibliography 359(6)
Solutions to Odd-Numbered Exercises 365(42)
Index 407
Richard A. Mollin is a professor in the Department of Mathematics and Statistics at the University of Calgary. In the past twenty-five years, Dr. Mollin has founded the Canadian Number Theory Association and has been awarded six Killam Resident Fellowships. He has written more than 200 publications, including Advanced Number Theory with Applications (CRC Press, August 2009), Fundamental Number Theory with Applications, Second Edition (CRC Press, February 2008), An Introduction to Cryptography, Second Edition (CRC Press, September 2006), Codes: The Guide to Secrecy from Ancient to Modern Times (CRC Press, May 2005), and RSA and Public-Key Cryptography (CRC Press, November 2002).