Atjaunināt sīkdatņu piekrišanu

E-grāmata: Algebraic Number Theory

4.12/5 (16 ratings by Goodreads)
  • Formāts: PDF+DRM
  • Sērija : Graduate Texts in Mathematics 110
  • Izdošanas datums: 29-Jun-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781461208532
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 55,90 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Graduate Texts in Mathematics 110
  • Izdošanas datums: 29-Jun-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781461208532
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The present book gives an exposition of the classical basic algebraic and analytic number theory and supersedes my Algebraic Numbers, including much more material, e. g. the class field theory on which 1 make further comments at the appropriate place later. For different points of view, the reader is encouraged to read the collec­ tion of papers from the Brighton Symposium (edited by Cassels-Frohlich), the Artin-Tate notes on class field theory, Weil's book on Basic Number Theory, Borevich-Shafarevich's Number Theory, and also older books like those of W eber, Hasse, Hecke, and Hilbert's Zahlbericht. It seems that over the years, everything that has been done has proved useful, theo­ retically or as examples, for the further development of the theory. Old, and seemingly isolated special cases have continuously acquired renewed significance, often after half a century or more. The point of view taken here is principally global, and we deal with local fields only incidentally. For a more complete treatment of these, cf. Serre's book Corps Locaux. There is much to be said for a direct global approach to number fields. Stylistically, 1 have intermingled the ideal and idelic approaches without prejudice for either. 1 also include two proofs of the functional equation for the zeta function, to acquaint the reader with different techniques (in some sense equivalent, but in another sense, suggestive of very different moods).

Recenzijas

Second Edition



S. Lang



Algebraic Number Theory



"This book is the second edition of Lang's famous and indispensable book on algebraic number theory. The major change from the previous edition is that the last chapter on explicit formulas has been completely rewritten. In addition, a few new sections have been added to the other chapters . . . Lang's books are always of great value for the graduate student and the research mathematician. This updated edition of Algebraic number theory is no exception."MATHEMATICAL REVIEWS

Papildus informācija

Springer Book Archives
Part One General Basic Theory
Chapter I Algebraic Integers
1 Localization
3(1)
2 Integral closure
4(4)
3 Prime ideals
8(3)
4 Chinese remainder theorem
11(1)
5 Galois extensions
12(6)
6 Dedekind rings
18(4)
7 Discrete valuation rings
22(5)
8 Explicit factorization of a prime
27(2)
9 Projective modules over Dedekind rings
29(2)
Chapter II Completions
1 Definitions and completions
31(10)
2 Polynomials in complete fields
41(4)
3 Some filtrations
45(3)
4 Unramified extensions
48(3)
5 Tamely ramified extensions
51(6)
Chapter III The Different and Discriminant
1 Complementary modules
57(5)
2 The different and ramification
62(2)
3 The discriminant
64(7)
Chapter IV Cyclotomic Fields
1 Roots of unity
71(5)
2 Quadratic fields
76(6)
3 Gauss sums
82(14)
4 Relations in ideal classes
96(3)
Chapter V Parallelotopes
1 The product formula
99(11)
2 Lattice points in parallelotopes
110(6)
3 A volume computation
116(3)
4 Minkowski's constant
119(4)
Chapter VI The Ideal Function
1 Generalized ideal classes
123(5)
2 Lattice points in homogeneously expanding domains
128(1)
3 The number of ideals in a given class
129(8)
Chapter VII Ideles and Adeles
1 Restricted direct products
137(2)
2 Adeles
139(1)
3 Ideles
140(5)
4 Generalized ideal class groups; relations with idele classes
145(6)
5 Embedding of k*v in the idele classes
151(1)
6 Galois operation on ideles and idele classes
152(3)
Chapter VIII Elementary Properties of the Zeta Function and L-series
1 Lemmas on Dirichlet series
155(4)
2 Zeta function of a number field
159(3)
3 The L-series
162(4)
4 Density of primes in arithmetic progressions
166(4)
5 Faltings' finiteness theorem
170(9)
Part Two Class Field Theory
Chapter IX Norm Index Computations
1 Algebraic preliminaries
179(6)
2 Exponential and logarithm functions
185(2)
3 The local norm index
187(3)
4 A theorem on units
190(3)
5 The global cyclic norm index
193(2)
6 Applications
195(2)
Chapter X The Artin Symbol, Reciprocity Law, and Class Field Theory
1 Formalism of the Artin symbol
197(3)
2 Existence of a conductor for the Artin symbol
200(6)
3 Class fields
206(7)
Chapter XI The Existence Theorem and Local Class Field Theory
1 Reduction to Kummer extensions
213(2)
2 Proof of the existence theorem
215(2)
3 The complete splitting theorem
217(2)
4 Local class field theory and the ramification theorem
219(5)
5 The Hilbert class field and the principal ideal theorem
224(2)
6 Infinite divisibility of the universal norms
226(3)
Chapter XII L-series Again
1 The proper abelian L-series
229(3)
2 Artin (non-abelian) L-series
232(4)
3 Induced characters and L-series contributions
236(9)
Part Three Analytic Theory
Chapter XIII Functional Equation of the Zeta Function, Hecke's Proof
1 The Poisson summation formula
245(5)
2 A special computation
250(3)
3 Functional equation
253(7)
4 Application to the Brauer-Siegel theorem
260(2)
5 Applications to the ideal function
262(14)
Appendix: Other applications
273(3)
Chapter XIV Functional Equation, Tate's Thesis
1 Local additive duality
276(2)
2 Local multiplicative theory
278(2)
3 Local functional equation
280(2)
4 Local computations
282(5)
5 Restricted direct products
287(2)
6 Global additive duality and Riemann-Roch theorem
289(3)
7 Global functional equation
292(5)
8 Global computations
297(6)
Chapter XV Density of Primes and Tauberian Theorem
1 The Dirichlet integral
303(1)
2 Ikehara's Tauberian theorem
304(6)
3 Tauberian theorem for Dirichlet series
310(2)
4 Non-vanishing of the L-series
312(3)
5 Densities
315(7)
Chapter XVI The Brauer-Siegel Theorem
1 An upper estimate for the residue
322(1)
2 A lower bound for the residue
323(2)
3 Comparison of residues in normal extensions
325(2)
4 End of the proofs
327(4)
Appendix: Brauer's lemma
328(3)
Chapter XVII Explicit Formulas
1 Weierstrass factorization of the L-series
331(2)
2 An estimate for ξ'/ξ
333(4)
3 The Weil formula
337(7)
4 The basic sum and the first part of its evaluation
344(4)
5 Evaluation of the sum: Second part
348(5)
Bibliography 353(2)
Index 355