Atjaunināt sīkdatņu piekrišanu

E-grāmata: Algebraic Number Theory and Fermat's Last Theorem

4.21/5 (38 ratings by Goodreads)
, (University of Warwick, UK)
  • Formāts: 504 pages
  • Izdošanas datums: 07-Feb-2025
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781040226841
  • Formāts - PDF+DRM
  • Cena: 62,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 504 pages
  • Izdošanas datums: 07-Feb-2025
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781040226841

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Updated to reflect current research and extended to cover more advanced topics as well as the basics, Algebraic Number Theory and Fermat’s Last Theorem, Fifth Edition introduces fundamental ideas of algebraic numbers and explores one of the most intriguing stories in the history of mathematics—the quest for a proof of Fermat’s Last Theorem. The authors use this celebrated theorem to motivate a general study of the theory of algebraic numbers, initially from a relatively concrete point of view. Students will see how Wiles’s proof of Fermat’s Last Theorem opened many new areas for future work.

New to the Fifth Edition

  • Pell's Equation x^2-dy^2=1: all solutions can be obtained from a single `fundamental' solution, which can be found using continued fractions.
  • Galois theory of number field extensions, relating the field structure to that of the group of automorphisms.
  • More material on cyclotomic fields, and some results on cubic fields.
  • Advanced properties of prime ideals, including the valuation of a fractional ideal relative to a prime ideal, localisation at a prime ideal, and discrete valuation rings.
  • Ramification theory, which discusses how a prime ideal factorises when the number field is extended to a larger one.
  • A short proof of the Quadratic Reciprocity Law based on properties of cyclotomic fields. This
  • Valuations and p-adic numbers. Topology of the p-adic integers.

Written by preeminent mathematicians Ian Stewart and David Tall, this text continues to teach students how to extend properties of natural numbers to more general number structures, including algebraic number fields and their rings of algebraic integers. It also explains how basic notions from the theory of algebraic numbers can be used to solve problems in number theory.



Updated to reflect current research and extended to cover more advanced topics as well as the basics, this book introduces fundamental ideas of algebraic numbers and explores one of the most intriguing stories in the history of mathematics—the quest for a proof of Fermat’s Last Theorem.

I. Algebraic Methods.
1. Algebraic Background.
2. Algebraic Numbers.
3. Quadratic and Cyclotomic Fields.
4. Pell's Equation.
5. Factorisation into Irreducibles.
6. Ideals. II. Geometric Methods.
7. Lattices.
8. Minkowski's Theorem.
9. Geometric Representation of Algebraic Numbers.
10. Dirichlet's Units Theorem.
11. Class-Group and Class-Number. III. Number-Theoretic Applications.
12. Computational Methods.
13. Kummer's Special Case of Fermat's Last Theorem. IV. Elliptic Curves and Elliptic Functions.
14. Elliptic Curves.
15. Elliptic Functions. V. Wiles's Proof of Fermat's Last Theorem.
16. The Path to the Final Breakthrough.
17. Wiles's Strategy and Subsequent Developments. VI. Galois Theory and Other Topics.
18. Extensions and Galois Theory.
19. Cyclotomic and Cubic Fields.
20. Prime Ideals Revisited.
21. Ramification Theory.
22. Quadratic Reciprocity.
23. Valuations and p-adic Numbers.

Ian Stewart is an emeritus professor of mathematics at the University of Warwick and a fellow of the Royal Society. Dr. Stewart has been a recipient of many honours, including the Royal Societys Faraday Medal, the IMA Gold Medal, the AAAS Public Understanding of Science and Technology Award, the LMS/IMA Zeeman Medal, and the University of Warwick Chancellors Medal. He has published more than 220 scientific papers and numerous books, including several bestsellers co-authored with Terry Pratchett and Jack Cohen that combine fantasy with nonfiction.

David Tall is an emeritus professor of mathematical thinking at the University of Warwick. Dr. Tall has published numerous mathematics textbooks and more than 200 papers on mathematics and mathematics education. His research interests include cognitive theory, algebra, visualization, mathematical thinking, and mathematics education.