Atjaunināt sīkdatņu piekrišanu

Algebras, Graphs and their Applications [Hardback]

(Saint Ambrose University, Davenport, Iowa, USA)
  • Formāts: Hardback, 444 pages, height x width: 234x156 mm, weight: 980 g
  • Izdošanas datums: 11-Sep-2013
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 146659019X
  • ISBN-13: 9781466590199
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 249,78 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 444 pages, height x width: 234x156 mm, weight: 980 g
  • Izdošanas datums: 11-Sep-2013
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 146659019X
  • ISBN-13: 9781466590199
Citas grāmatas par šo tēmu:
"Preface In this book, we consider algebra on directed graphs. From combinatorial objects, direct graphs, we establish corresponding algebraic objects which become groupoids. We call such groupoids graph groupoids. Connected with groupoid theory, we investigate the properties of graph groupoids. From this investigation, we can realize that graph groupoids act like the free groups in group theory. In other words, the study of graph groupoids is understood as groupoidal version of free-group theory. As application, we observe how graph groupoids are playing their role in different mathematical and scientific areas, including general groupoid theory, representation theory, automata theory, operator algebra (von Neumann algebra theory, C*-algebra theory, free probability, and index theory), noncommutative dynamical systems (groupoid dynamical systems), operator theory (spectral theory), fractal theory, information theory (entropy theory), and network theory, etc. We can check all operated groupoids (for instance, groupoid sums, product groupoids, quotient groupoids, etc) of graph groupoids are graph groupoids, too. This means that the study of operated groupoids of graph groupoids becomes nothing but studying other graph groupoids. It makes us easy to handlegraph-groupoid related structures"--

This book introduces the study of algebra induced by combinatorial objects called directed graphs. These graphs are used as tools in the analysis of graph-theoretic problems and in the characterization and solution of analytic problems. The book presents recent research in operator algebra theory connected with discrete and combinatorial mathematical objects. It also covers tools and methods from a variety of mathematical areas, including algebra, operator theory, and combinatorics, and offers numerous applications of fractal theory, entropy theory, K-theory, and index theory.

Preface vii
1 Algebra on Graphs
1(43)
1.1 Introduction
1(1)
1.2 Preliminaries
2(8)
1.2.1 Graph Groupoids
2(2)
1.2.2 Groupoids and Graphs
4(3)
1.2.3 More about Graph Groupoids
7(3)
1.3 Groupoids under Operations
10(5)
1.3.1 Sum of Groupoids
10(1)
1.3.2 Product Groupoids
10(1)
1.3.3 Quotient Groupoids
11(4)
1.3.4 Complemented Groupoids
15(1)
1.4 Operations on Graphs
15(26)
1.4.1 Unioned Graphs
16(6)
1.4.2 Product Graphs
22(12)
1.4.3 Quotient Graphs
34(5)
1.4.4 Complemented Graphs
39(2)
1.5 Bibliography
41(3)
2 Representations and Operator Algebras of Graph Groupoids
44(89)
2.1 Introduction
44(1)
2.2 Partial Isometries
45(1)
2.3 Graph von Neumann Algebras
46(6)
2.3.1 Canonical Representation of Graph Groupoids
46(2)
2.3.2 Groupoid W*-Dynamical Systems
48(2)
2.3.3 Groupoid Crossed Product W*-Algebras
50(2)
2.4 M-Diagonal Graph W*-Probability Spaces
52(31)
2.4.1 Free Probability
52(2)
2.4.2 Free Probabilistic Models on MG
54(1)
2.4.3 Free Structures
55(21)
2.4.4 Graph-Groupoid von Neumann Algebras
76(1)
2.4.5 Examples
77(6)
2.5 C*-Subalgebras Generated by Partial Isometries
83(33)
2.5.1 Partial Isometries and Isometric Extensions
84(5)
2.5.2 Directed Graphs Induced by Partial Isometries
89(6)
2.5.3 Groupoids Induced by Partial Isometries
95(2)
2.5.4 C*-Subalgbras Generated by one Partial Isometry
97(2)
2.5.5 Classification for C*(a)
99(4)
2.5.6 C*-Subalgebras Generated by Partial Isometries
103(8)
2.5.7 Examples
111(5)
2.6 C*-Algebras Generated by a Single Operator
116(13)
2.6.1 Groupoid Crossed Product C*-Algebras
117(4)
2.6.2 A C*-Subalgebra of B(H) Generated by an Operator
121(5)
2.6.3 Examples
126(3)
2.7 Bibliography
129(4)
3 Operator Theory on Graphs
133(66)
3.1 Introduction
133(3)
3.1.1 Overview
133(2)
3.1.2 Motivation and Applications
135(1)
3.2 Self-Adjointness and Unitary Property
136(14)
3.2.1 Graph Operators
136(3)
3.2.2 Self-Adjoint Graph Operators
139(3)
3.2.3 Unitary Graph Operators
142(8)
3.3 Normality of Graph Operators
150(13)
3.3.1 Hyponormality
151(11)
3.3.2 Normality
162(1)
3.4 Operators in Free Group Factors
163(4)
3.5 Graph Operators Induced by Regular Trees
167(29)
3.5.1 Graph Hilbert Space Generated by Regular Trees
169(2)
3.5.2 Representations of N-Tree Operators on Vertex Spaces
171(25)
3.6 Bibliography
196(3)
4 Fractals on Graph Groupoids
199(72)
4.1 Introduction
199(10)
4.1.1 Automata and Fractal Groups
200(3)
4.1.2 Right Graph Von Neumann Algebras
203(3)
4.1.3 M-Valued Right Graph W*-Probability Spaces
206(3)
4.2 Labeled Graph Groupoids and Graph Automata
209(1)
4.3 Graph Fractaloids
210(8)
4.4 Labeling Operators of Graph Fractaloids
218(13)
4.4.1 Labeling Operators
218(2)
4.4.2 Free Distributional Data of Labeling Operators
220(1)
4.4.3 Labeling Operators of Graph Fractaloids
221(4)
4.4.4 Refinements of (M3)
225(6)
4.5 Graph-Theoretical Characterization
231(9)
4.5.1 Graph Fractaloids Redefined
231(6)
4.5.2 Graph-Theoretical Characterization of Graph Fractaloids
237(3)
4.6 Fractal Graphs Constructed by Fractal Graphs
240(4)
4.7 Fractal Pairs of Graph Fractaloids
244(3)
4.8 Equivalence Classes of Graph Fractaloids
247(3)
4.9 Completely Finite Fractalization
250(8)
4.10 Fractalized-Graph von Neumann Algebras
258(6)
4.11 Fractalized Labeling Operators
264(4)
4.12 Bibliography
268(3)
5 Entropy Theory on Graphs
271(22)
5.1 Entropy
271(2)
5.2 Entropy on Finite Graphs
273(6)
5.3 Entropy of Finite Fractal Graphs
279(13)
5.3.1 Basic Computations
279(5)
5.3.2 Entropy of a Finite Fractal Graph
284(8)
5.4 Bibliography
292(1)
6 Jones Index Theory on Graph Groupoids
293(70)
6.1 Introduction
293(1)
6.2 Quotient Graphs and Graph-Index
293(15)
6.2.1 The Quotient Graph G1:0 of G0 ≤ G1
294(7)
6.2.2 Basic Construction for G0 ≤ G1
301(6)
6.2.3 Special Case: Full-Vertex Subgraph Inclusions
307(1)
6.3 Watatani's Extended Jones Index Theory
308(1)
6.4 Index Theory on Graph von Neumann Algebras
309(16)
6.4.1 Index Theory for Canonical Conditional Expectations
310(9)
6.4.2 Finite-Index Type Finite-Graph von Neumann Algebras
319(1)
6.4.3 Infinite-Index Type Finite-Graph von Neumann Algebras
320(1)
6.4.4 Connection Between [ G1 : G0] and IndE
321(4)
6.5 Basic Constructions Induced by Full-Vertex Subgraph Inclusions
325(13)
6.6 Ladders and Nets on Graph von Neumann Algebras
338(12)
6.6.1 Ladders of Graphs
339(3)
6.6.2 Vertex-Subgraph Inclusions
342(1)
6.6.3 Ladders Induced by Graph von Neumann Algebras
343(2)
6.6.4 Quadruples in a Ladder
345(3)
6.6.5 Nets of Graph von Neumann Algebras
348(2)
6.7 Index-Morphisms
350(11)
6.7.1 Graph-Index-Morphism
351(2)
6.7.2 Index-Morphism on Graph von Neumann Algebras
353(3)
6.7.3 Classification of Finite Trees
356(5)
6.8 Bibliography
361(2)
7 Network Theory on Graphs
363(41)
7.1 Electric Resistance Network Theory
363(10)
7.1.1 Networks and Network Groupoids
364(6)
7.1.2 Ohm's Law and ERNs
370(3)
7.2 Representations of ERNs
373(7)
7.2.1 Energy Hilbert Spaces
373(4)
7.2.2 Dissipation Hilbert Space
377(3)
7.3 ERN-Actions on Energy Hilbert Spaces
380(11)
7.3.1 Transfer Operators and Laplacians
382(2)
7.3.2 Energy Form and ERN-Actions on Hε
384(7)
7.4 Free Structures Induced by ERN-Groupoids
391(10)
7.4.1 Free-Moment Computations in (G, εx)
391(4)
7.4.2 Free-Cumulant Computations in (G, εx)
395(6)
7.5 Bibliography
401(3)
8 K-Theory on Graphs
404(25)
8.1 Introduction
404(1)
8.2 K-Theory
405(2)
8.3 Projections in G
407(7)
8.4 Projections in M∞(G)
414(6)
8.5 K0-Groups of G
420(6)
8.5.1 K0-Group K0(G)
420(3)
8.5.2 Dimension Group K0(G)
423(3)
8.6 Bibliography
426(3)
Index 429