Atjaunināt sīkdatņu piekrišanu

Algorithmic Information Theory [Mīkstie vāki]

3.65/5 (28 ratings by Goodreads)
  • Formāts: Paperback / softback, 192 pages, height x width x depth: 246x188x20 mm, weight: 345 g, Worked examples or Exercises
  • Sērija : Cambridge Tracts in Theoretical Computer Science
  • Izdošanas datums: 02-Dec-2004
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 0521616042
  • ISBN-13: 9780521616041
  • Mīkstie vāki
  • Cena: 67,72 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 192 pages, height x width x depth: 246x188x20 mm, weight: 345 g, Worked examples or Exercises
  • Sērija : Cambridge Tracts in Theoretical Computer Science
  • Izdošanas datums: 02-Dec-2004
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 0521616042
  • ISBN-13: 9780521616041
Chaitin, the inventor of algorithmic information theory, presents in this book the strongest possible version of Gödel's incompleteness theorem, using an information theoretic approach based on the size of computer programs. One half of the book is concerned with studying the halting probability of a universal computer if its program is chosen by tossing a coin. The other half is concerned with encoding the halting probability as an algebraic equation in integers, a so-called exponential diophantine equation.

Papildus informācija

Expounds Gödel's incompleteness theorey using an information theoretic approach based on the size of computer programs.
Foreword vii
Preface ix
Figures
xi
Introduction
1(5)
I Formalisms for Computation: Register Machines, Exponential Diophantine Equations, & Pure LISP
6(85)
The Arithmetization of Register Machines
7(44)
Introduction
7(2)
Pascal's Triangle Mod 2
9(5)
LISP Register Machines
14(13)
Dictionary of Auxiliary Variables Used in Arithmetization
27(3)
An Example of Arithmetization
30(7)
A Complete Example of Arithmetization
37(3)
A Complete Example of Arithmetization: Expansion of ⇒'s
40(6)
A Complete Example of Arithmetization: Left-Hand Side
46(2)
A Complete Example of Arithmetization: Right-Hand Side
48(3)
A Version of Pure LISP
51(18)
Introduction
51(1)
Definition of LISP
52(7)
Examples
59(3)
LISP in LISP I
62(2)
LISP in LISP II
64(2)
LISP in LISP III
66(3)
The LISP Interpreter EVAL
69(22)
Register Machine Pseudo-Instructions
69(2)
EVAL in Register Machine Language
71(12)
The Arithmetization of EVAL: Summary Information
83(4)
The Arithmetization of EVAL: Start of Left-Hand Side
87(1)
The Arithmetization of EVAL: End of Right-Hand Side
88(3)
II Program Size, Halting Probabilities, Randomness, & Metamathematics
91(74)
Conceptual Development
92(15)
Complexity via LISP Expressions
92(6)
Complexity via Binary Programs
98(1)
Complexity via Self-Delimiting Binary Programs
99(2)
Omega in LISP
101(6)
Program Size
107(21)
Introduction
107(1)
Definitions
108(4)
Basic Identities
112(12)
Random Strings
124(4)
Randomness
128(18)
Introduction
128(4)
Random Reals
132(14)
Incompleteness
146(17)
Incompleteness Theorems for Lower Bounds on Information Content
146(3)
Incompleteness Theorems for Random Reals: First Approach
149(2)
Incompleteness Theorems for Random Reals: | Axioms |
151(8)
Incompleteness Theorems for Random Reals: H(Axioms)
159(4)
Conclusion
163(2)
Implementation Notes 165(2)
The Number of S-expressions of Size N 167(9)
Bibliography 176