Atjaunināt sīkdatņu piekrišanu

E-grāmata: Algorithmic Learning Theory: 20th International Conference, ALT 2009, Porto, Portugal, October 3-5, 2009, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 5809
  • Izdošanas datums: 29-Sep-2009
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642044144
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 5809
  • Izdošanas datums: 29-Sep-2009
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642044144

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 20th International Conference on Algorithmic Learning Theory, ALT 2009, held in Porto, Portugal, in October 2009, co-located with the 12th International Conference on Discovery Science, DS 2009.

The 26 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from 60 submissions. The papers are divided into topical sections of papers on online learning, learning graphs, active learning and query learning, statistical learning, inductive inference, and semisupervised and unsupervised learning. The volume also contains abstracts of the invited talks: Sanjoy Dasgupta, The Two Faces of Active Learning; Hector Geffner, Inference and learning in Planning; Jiawei Han, Mining Heterogeneous; Information Networks By Exploring the Power of Links, Yishay Mansour, Learning and Domain Adaptation; Fernando C.N. Pereira, Learning on the Web.

Invited Papers
The Two Faces of Active Learning
1(1)
Sanjoy Dasgupta
Inference and Learning in Planning
2(1)
Hector Geffner
Mining Heterogeneous Information Networks by Exploring the Power of Links
3(1)
Jiawei Han
Learning and Domain Adaptation
4(3)
Yishay Mansour
Learning on the Web
7(1)
Fernando C.N. Pereira
Regular Contributions
Online Learning
Prediction with Expert Evaluators' Advice
8(15)
Alexey Chernov
Vladimir Vovk
Pure Exploration in Multi-armed Bandits Problems
23(15)
Sebastien Bubeck
Remi Munos
Gilles Stoltz
The Follow Perturbed Leader Algorithm Protected from Unbounded One-Step Losses
38(15)
Vladimir V. Vyugin
Computable Bayesian Compression for Uniformly Discretizable Statistical Models
53(15)
Lukasz Debowski
Calibration and Internal No-Regret with Random Signals
68(15)
Vianney Perchet
St. Petersburg Portfolio Games
83(14)
Laszlo Gyorfi
Peter Kevei
Learning Graphs
Reconstructing Weighted Graphs with Minimal Query Complexity
97(13)
Nader H. Bshouty
Hanna Mazzawi
Learning Unknown Graphs
110(16)
Nicolo Cesa-Bianchi
Claudio Gentile
Fabio Vitale
Completing Networks Using Observed Data
126(15)
Tatsuya Akutsu
Takeyuki Tamura
Katsuhisa Horimoto
Active Learning and Query Learning
Average-Case Active Learning with Costs
141(15)
Andrew Guillory
Jeff Bilmes
Canonical Horn Representations and Query Learning
156(15)
Marta Arias
Jose L. Balcazar
Learning Finite Automata Using Label Queries
171(15)
Dana Angluin
Leonor Becerra-Bonache
Adrian Horia Dediu
Lev Reyzin
Characterizing Statistical Query Learning: Simplified Notions and Proofs
186(15)
Balazs Szorenyi
An Algebraic Perspective on Boolean Function Learning
201(15)
Ricard Gavalda
Denis Therien
Statistical Learning
Adaptive Estimation of the Optimal ROC Curve and a Bipartite Ranking Algorithm
216(16)
Stephan Clemencon
Nicolas Vayatis
Complexity versus Agreement for Many Views: Co-regularization for Multi-view Semi-supervised Learning
232(15)
Odalric-Ambrym Maillard
Nicolas Vayatis
Error-Correcting Tournaments
247(16)
Alina Beygelzimer
John Langford
Pradeep Ravikumar
Inductive Inference
Difficulties in Forcing Fairness of Polynomial Time Inductive Inference
263(15)
John Case
Timo Kotzing
Learning Mildly Context-Sensitive Languages with Multidimensional Substitutability from Positive Data
278(15)
Ryo Yoshinaka
Uncountable Automatic Classes and Learning
293(15)
Sanjay Jain
Qinglong Luo
Pavel Semukhin
Frank Stephan
Iterative Learning from Texts and Counterexamples Using Additional Information
308(15)
Sanjay Jain
Efim Kinber
Incremental Learning with Ordinal Bounded Example Memory
323(15)
Lorenzo Carlucci
Learning from Streams
338(15)
Sanjay Jain
Frank Stephan
Nan Ye
Semi-supervised and Unsupervised Learning
Smart PAC-Learners
353(15)
Hans Ulrich Simon
Approximation Algorithms for Tensor Clustering
368(16)
Stefanie Jegelka
Suvrit Sra
Arindam Banerjee
Agnostic Clustering
384(15)
Maria Florina Balcan
Heiko Roglin
Shang-Hua Teng
Author Index 399