Atjaunināt sīkdatņu piekrišanu

E-grāmata: Algorithmic Learning Theory: 22nd International Conference, ALT 2011, Espoo, Finland, October 5-7, 2011, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Artificial Intelligence 6925
  • Izdošanas datums: 07-Oct-2011
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642244124
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Artificial Intelligence 6925
  • Izdošanas datums: 07-Oct-2011
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642244124

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 22nd International Conference on Algorithmic Learning Theory, ALT 2011, held in Espoo, Finland, in October 2011, co-located with the 14th International Conference on Discovery Science, DS 2011. The 28 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from numerous submissions. The papers are divided into topical sections of papers on inductive inference, regression, bandit problems, online learning, kernel and margin-based methods, intelligent agents and other learning models.

Editors' Introduction 1(13)
Jyrki Kivinen
Csaba Szepesvari
Esko Ukkonen
Thomas Zeugmann
Invited Papers
Models for Autonomously Motivated Exploration in Reinforcement Learning (Extended Abstract)
14(4)
Peter Auer
Shiau Hong Lim
Chris Watkins
On the Expressive Power of Deep Architectures
18(19)
Yoshua Bengio
Olivier Delalleau
Optimal Estimation
37(1)
Jorma Rissanen
Learning from Label Preferences
38(1)
Eyke Hullermeier
Johannes Furnkranz
Information Distance and Its Extensions
39(1)
Ming Li
Inductive Inference
Iterative Learning from Positive Data and Counters
40(15)
Timo Kotzing
Robust Learning of Automatic Classes of Languages
55(15)
Sanjay Jain
Eric Martin
Frank Stephan
Learning and Classifying
70(14)
Sanjay Jain
Eric Martin
Frank Stephan
Learning Relational Patterns
84(15)
Michael Geilke
Sandra Zilles
Regression
Adaptive and Optimal Online Linear Regression on l1-Balls
99(15)
Sebastien Gerchinovitz
Jia Yuan Yu
Re-adapting the Regularization of Weights for Non-stationary Regression
114(15)
Nina Vaits
Koby Crammer
Competing against the Best Nearest Neighbor Filter in Regression
129(15)
Arnak S. Dalalyan
Joseph Salmon
Bandit Problems
Lipschitz Bandits without the Lipschitz Constant
144(15)
Sebastien Bubeck
Gilles Stoltz
Jia Yuan Yu
Deviations of Stochastic Bandit Regret
159(15)
Antoine Salomon
Jean-Yves Audibert
On Upper-Confidence Bound Policies for Switching Bandit Problems
174(15)
Aurelien Garivier
Eric Moulines
Upper-Confidence-Bound Algorithms for Active Learning in Multi-armed Bandits
189(15)
Alexandra Carpentier
Alessandro Lazaric
Mohammad Ghavamzadeh
Remi Munos
Peter Auer
Online Learning
The Perception with Dynamic Margin
204(15)
Constantinos Panagiotakopoulos
Petroula Tsampouka
Combining Initial Segments of Lists
219(15)
Manfred K. Warmath
Wouter M. Koolen
David P. Helmbold
Regret Minimization Algorithms for Pricing Lookback Options
234(15)
Eyal Gofer
Yishay Mansour
Making Online Decisions with Bounded Memory
249(13)
Chi-Jen Lu
Wei-Fu Lu
Universal Prediction of Selected Bits
262(15)
Tor Lattimore
Marcus Hutter
Vaibhav Gavane
Semantic Communication for Simple Goals Is Equivalent to On-line Learning
277(15)
Brendan Juba
Santosh Vempala
Kernel and Margin Based Methods
Accelerated Training of Max-Margin Markov Networks with Kernels
292(16)
Xinhua Zhang
Ankan Saha
S.V.N. Vishwanathan
Domain Adaptation in Regression
308(16)
Corinna Cortes
Mehryar Mohri
Approximate Reduction from AUC Maximization to 1-Norm Soft Margin Optimization
324(14)
Daiki Suehiro
Kohei Hatano
Eiji Takimoto
Intelligent Agents
Axioms for Rational Reinforcement Learning
338(15)
Peter Sunehag
Marcus Hutter
Universal Knowledge-Seeking Agents
353(15)
Laurent Orseau
Asymptotically Optimal Agents
368(15)
Tor Lattimore
Marcus Hutter
Time Consistent Discounting
383(15)
Tor Lattimore
Marcus Hutter
Other Learning Models
Distributional Learning of Simple Context-Free Tree Grammars
398(15)
Anna Kasprzik
Ryo Yoshinaka
On Noise-Tolerant Learning of Sparse Parities and Related Problems
413(12)
Elena Grigorescu
Lev Reyzin
Santosh Vempala
Supervised Learning and Co-training
425(15)
Malte Darnstadt
Hans Ulrich Simon
Balazs Szorenyi
Learning a Classifier when the Labeling Is Known
440(12)
Shalev Ben-David
Shai Ben-David
Erratum
Erratum: Learning without Coding
452(1)
Samuel E. Moelius III
Sandra Zilles
Author Index 453