Atjaunināt sīkdatņu piekrišanu

E-grāmata: Algorithmic Learning Theory: 24th International Conference, ALT 2013, Singapore, October 6-9, 2013, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Artificial Intelligence 8139
  • Izdošanas datums: 27-Sep-2013
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642409356
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Artificial Intelligence 8139
  • Izdošanas datums: 27-Sep-2013
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642409356

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the proceedings of the 24th International Conference on Algorithmic Learning Theory, ALT 2013, held in Singapore in October 2013, and co-located with the 16th International Conference on Discovery Science, DS 2013. The 23 papers presented in this volume were carefully reviewed and selected from 39 submissions. In addition the book contains 3 full papers of invited talks. The papers are organized in topical sections named: online learning, inductive inference and grammatical inference, teaching and learning from queries, bandit theory, statistical learning theory, Bayesian/stochastic learning, and unsupervised/semi-supervised learning.
Editors Introduction.- Learning and Optimizing with Preferences.-
Efficient Algorithms for Combinatorial Online Prediction.- Exact Learning
from Membership Queries: Some Techniques, Results and New Directions.- Online
Learning Universal Algorithm for Trading in Stock Market Based on the Method
of Calibration.- Combinatorial Online Prediction via Metarounding.- On
Competitive Recommendations.- Online PCA with Optimal Regrets.- Inductive
Inference and Grammatical Inference Partial Learning of Recursively
Enumerable Languages.- Topological Separations in Inductive Inference.- PAC
Learning of Some Subclasses of Context-Free Grammars with Basic
Distributional Properties from Positive Data.- Universal Knowledge-Seeking
Agents for Stochastic Environments.- Teaching and Learning from Queries Order
Compression Schemes.- Learning a Bounded-Degree Tree Using Separator
Queries.- Faster Hoeffding Racing: Bernstein Races via Jackknife Estimates.-
Robust Risk-Averse Stochastic Multi-armed Bandits.- An Efficient Algorithm
for Learning with Semi-bandit Feedback.- Differentially-Private Learning of
Low Dimensional Manifolds.- Generalization and Robustness of Batched Weighted
Average Algorithm with V-Geometrically Ergodic Markov Data.- Adaptive Metric
Dimensionality Reduction.- Dimension-Adaptive Bounds on Compressive FLD
Classification.- Bayesian Methods for Low-Rank Matrix Estimation: Short
Survey and Theoretical Study.- Concentration and Confidence for Discrete
Bayesian Sequence Predictors.- Algorithmic Connections between Active
Learning and Stochastic Convex Optimization.- Unsupervised/Semi-Supervised
Learning Unsupervised Model-Free Representation Learning.- Fast Spectral
Clustering via the Nyström Method.- Nonparametric Multiple Change Point
Estimation in Highly Dependent Time Series.