Atjaunināt sīkdatņu piekrišanu

Amplitudes, Hodge Theory and Ramification: From Periods and Motives to Feynman Amplitudes [Mīkstie vāki]

Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 240 pages, weight: 450 g
  • Sērija : Clay Mathematics Proceedings
  • Izdošanas datums: 30-Jan-2021
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470443295
  • ISBN-13: 9781470443290
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 136,64 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 240 pages, weight: 450 g
  • Sērija : Clay Mathematics Proceedings
  • Izdošanas datums: 30-Jan-2021
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470443295
  • ISBN-13: 9781470443290
Citas grāmatas par šo tēmu:
This is the first volume of the lectures presented at the Clay Mathematics Institute 2014 Summer School, Periods and Motives: Feynman amplitudes in the 21st century, which took place at the Instituto de Ciencias MatemįticasICMAT (Institute of Mathematical Sciences) in Madrid, Spain. It covers the presentations by S. Bloch, by M. Marcolli and by L. Kindler and K. Rülling.

The main topics of these lectures are Feynman integrals and ramification theory. On the Feynman integrals side, their relation with Hodge structures and heights as well as their monodromy are explained in Blochs lectures. Two constructions of Feynman integrals on configuration spaces are presented in Ceyhan and Marcollis notes. On the ramification theory side an introduction to the theory of l -adic sheaves with emphasis on their ramification theory is given. These notes will equip the reader with the necessary background knowledge to read current literature on these subjects.
Preface vii
Foreword xi
Yuri I. Manin
Feynman Integrals in Mathematics and Physics
1(34)
Spencer Bloch
Feynman integrals and periods in configuration spaces
35(68)
Ozgur Ceyhan
Matilde Marcolli
Introductory course on -adic sheaves and their ramification theory on curves
103
Lars Kindler
Kay Rulling
K. Ebrahimi-Fard, Norwegian University of Science and Technology, Trondheim, Norway.

J. I. Burgos Gil, Institute of Mathematical Sciences, Spanish National Research Council, Madrid, Spain.

D. Manchon, CNRS et Universite Clermont-Auvergne, Aubiere, France