Atjaunināt sīkdatņu piekrišanu

E-grāmata: Anaerobic Treatment and Resource Recovery from Methanol Rich Waste Gases and Wastewaters

(IHE Institute for Water Education, Delft, The Netherlands)
  • Formāts: 228 pages
  • Sērija : IHE Delft PhD Thesis Series
  • Izdošanas datums: 20-Aug-2019
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000740424
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 96,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 228 pages
  • Sērija : IHE Delft PhD Thesis Series
  • Izdošanas datums: 20-Aug-2019
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000740424
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Methanol is an important volatile organic compound (VOC) present in the gaseous and liquid effluents of process industries such as pulp and paper, paint manufacturing and petroleum refineries. An estimated 65% of the total methanol emission was from the Kraft mills of the pulp and paper industries. The effect of selenate, sulfate and thiosulfate on methanol utilization for volatile fatty acids (VFA) production was individually examined in batch systems. Gas-phase methanol removal along with thiosulfate reduction was carried out for 123 d in an anoxic BTF. To examine the gas-phase methanol removal along with selenate reduction, another anoxic biotrickling filter (BTF) was operated for 89 d under step and continuous selenate feeding conditions. For the study on liquid-phase methanol, acetogenesis of foul condensate (FC) obtained from a chemical pulping industry was tested in three upflow anaerobic sludge blanket (UASB) reactors operated at 22, 37 and 55 ŗC for 51 d. The recovery of VFA was explored through adsorption studies using anion exchange resins in batch systems. The adsorption capacity of individual VFA on Amberlite IRA-67 and Dowex optipore L-493 was examined by fitting the experimental data to adsorption isotherms and kinetic models. A sequential batch process was tested to achieve selective separation of acetic acid from the VFA mixture.
List of abbreviations
xiii
Summary xiv
Samenvatting xv
Yhteenveto xvi
Sommario xvii
Resume xviii
Acknowledgements xix
Author's contribution xx
Chapter 1 General introduction
1(12)
1.1 Background
2(1)
1.2 Problem description
3(2)
1.3 Research objectives
5(1)
1.4 Thesis structure
6(7)
References
8(5)
Chapter 2 Literature review
13(30)
2.1 Methanol in the pulping industry
14(1)
2.2 Bioreactors for gas-phase methanol degradation
15(5)
2.2.1 Biofilters
16(1)
2.2.2 Bioscrubbers
16(1)
2.2.3 Biotrickling filters
16(2)
2.2.4 Operational parameters for the biotrickling filter (BTF)
18(2)
2.3 Anaerobic methanol utilization
20(2)
2.3.1 Methanogenesis
20(1)
2.3.2 Methanol as electron donor for the removal of sulfur oxyanions
21(1)
2.4 Waste derived volatile fatty acids
22(4)
2.4.1 VFA recovery techniques
22(1)
2.4.2 VFA recovery by adsorption on ion exchange resins
23(2)
2.4.3 Parameters influencing VFA adsorption on ion exchange resins
25(1)
2.5 Other industrial waste gases
26(17)
2.5.1 Methane availability and emissions
26(1)
2.5.2 Aerobic and anaerobic methanotrophy
27(1)
2.5.3 Gas-to-liquid fuel technologies
28(3)
References
31(12)
Chapter 3 Selenate and thiosulfate reduction using methanol as electron donor
43(18)
Abstract
44(1)
3.1 Introduction
45(1)
3.2 Materials and methods
46(4)
3.2.1 Source of biomass and medium composition
46(1)
3.2.2 Experimental design
46(3)
3.2.3 Analytical methods
49(1)
3.3 Results
50(4)
3.3.1 Selenate reduction and its effect on methanol utilization
50(1)
3.3.2 S2O32- and SO42- reduction using methanol as electron donor
50(4)
3.4 Discussion
54(2)
3.4.1 Methanogenesis versus acetogenesis of methanol
54(1)
3.4.2 Thiosulfate and sulfate reduction
55(1)
3.4.3 Selenate reduction
56(1)
3.5 Conclusions
56(5)
References
57(4)
Chapter 4 Performance of a biotrickling filter for anaerobic utilization of gas-phase methanol coupled to thiosulphate reduction and resource recovery through volatile fatty acids
61(28)
Abstract
62(1)
4.1 Introduction
63(1)
4.2 Materials and methods
64(6)
4.2.1 Source of biomass and medium composition
64(1)
4.2.2 Biotrickling filter (BTF)
65(1)
4.2.3 Operational phases of the BTF
66(1)
4.2.4 Performance evaluation of the BTF
67(3)
4.2.5 Analytical methods
70(1)
4.3 Results and discussion
70(13)
4.3.1 Methanol utilization
70(4)
4.3.2 VFA evolution
74(2)
4.3.3 Thiosulphate (S2O32-) reduction
76(1)
4.3.4 Disproportionation of thiosulphate (S2O32-)
77(2)
4.3.5 Hydrogen sulfide (H2S) production
79(1)
4.3.6 Effect of unregulated pH
80(1)
4.3.7 Practical implication and future research
81(2)
4.4 Conclusions
83(6)
References
83(6)
Chapter 5 Gas-phase methanol fed anaerobic biotrickling filter for the reduction of selenate under step and continuous feeding conditions
89(24)
Abstract
90(1)
5.1 Introduction
91(1)
5.2 Materials and methods
92(4)
5.2.1 Source of biomass and media composition
92(1)
5.2.2 Biotrickling filter set-up and operation
92(3)
5.2.3 Performance parameters of the BTF
95(1)
5.2.4 Analytical methods
96(1)
5.3 Results
96(8)
5.3.1 Selenate reduction
96(1)
5.3.2 Selenium mass balance and recovery
97(1)
5.3.3 Methanol utilization
97(7)
5.4 Discussion
104(4)
5.4.1 Selenate reduction in the methanol fed BTF
104(2)
5.4.2 Anaerobic utilization of methanol in the presence of selenate
106(1)
5.4.3 Practical implications
107(1)
5.5 Conclusions
108(5)
References
108(5)
Chapter 6 Selenate bioreduction using methane as the electron donor in a biotrickling filter
113(22)
Abstract
114(1)
6.1 Introduction
115(1)
6.2 Materials and methods
116(5)
6.2.1 Biomass collection and medium composition
116(1)
6.2.2 Batch experiments
117(1)
6.2.3 Biotrickling filter
118(2)
6.2.4 Analytical methods
120(1)
6.3 Results
121(5)
6.3.1 Selenate reduction in batch studies
121(2)
6.3.2 Performance of the biotrickling filter
123(3)
6.4 Discussion
126(3)
6.4.1 Bioreduction of selenate coupled to the anaerobic oxidation of methane
126(2)
6.4.2 Acetate and propionate production in the BTF
128(1)
6.4.3 Practical implications
129(1)
6.5 Conclusions
129(6)
References
130(5)
Chapter 7 Volatile fatty acid production from Kraft mill foul condensate in upflow anaerobic sludge blanket reactors
135(30)
Abstract
136(1)
7.1 Introduction
137(1)
7.2 Materials and methods
138(6)
7.2.1 Source of biomass and media composition
138(1)
7.2.2 Characteristics of the foul condensate (FC)
138(1)
7.2.3 Experimental setup
138(1)
7.2.4 Operational phases of the UASB reactors
139(1)
7.2.5 Batch activity tests
140(2)
7.2.6 Analytical methods
142(2)
7.3 Results
144(9)
7.3.1 Enrichment of acetogens in the UASB reactors
144(4)
7.3.2 Acetogenesis of the foul condensate (FC)
148(1)
7.3.3 Batch activity tests
149(4)
7.4 Discussion
153(4)
7.4.1 Foul condensate (FC) utilization in the UASB reactors
153(4)
Enrichment of acetogens
157(3)
7.4.2 Biomass activity and CH4 vs VFA production
157(1)
7.4.3 Effect of temperature on UASB reactor performance
158(1)
7.4.4 Practical implications
159(1)
7.5 Conclusions
160(5)
References
160(5)
Chapter 8 Volatile fatty acid adsorption on anion exchange resins: kinetics and selective recovery of acetic acid
165(28)
Abstract
166(1)
8.1 Introduction
167(2)
8.2 Materials and methods
169(2)
8.2.1 Adsorption experiment
169(1)
8.2.2 Adsorption kinetics
169(1)
8.2.3 Resin regeneration
170(1)
8.2.4 Adsorption isotherm
170(1)
8.2.5 Selective adsorption of VFA
171(1)
8.3 Results and discussion
171(17)
8.3.1 Screening of resins
171(3)
8.3.2 Effect of resin concentration
174(3)
8.3.3 Effect of contact time
177(2)
8.3.4 Kinetics of VFA adsorption
179(1)
8.3.5 Diffusion mechanism for VFA adsorption
179(1)
8.3.6 Desorption and VFA recovery
180(2)
8.3.7 Adsorption isotherm
182(4)
8.3.8 Sequential batch adsorption for separation of individual VFA
186(2)
8.4 Conclusions
188(5)
References
189(4)
Chapter 9 General discussion, conclusions
193(12)
9.1 General discussion
194(3)
9.2 VFA production from gas-phase methanol
197(1)
9.3 VFA production from liquid-phase methanol
197(1)
9.4 Methanol rich effluents as carbon source for the reduction of S and Se oxyanions
198(1)
9.5 VFA recovery using ion-exchange resins
198(1)
9.6 Future perspectives
199(3)
9.5.1 Treatment of methanol rich effluents
199(2)
9.5.2 Methanol rich effluents as energy source for the reduction of S and Se oxyanion rich effluents
201(1)
9.5.3 Waste-derived VFA
201(1)
9.5.4 Gas-to-liquid fuel technologies
201(1)
9.7 Conclusions
202(3)
References
203(2)
Curriculum vitae 205(2)
Sense Diploma 207
Tejaswini Eregowda was born on 19 October, 1989 in Holenarsipura, India. Raised in Bengaluru, Tejaswini received her bachelor degree in Engineering (Biotechnology) from PES Institute of Technology in 2011 and received AICTE-GATE scholarship to support her master degree in Technology (Environmental Engineering) at Manipal Institute of Technology (2011-2013). She was selected as a student intern to work at Gentech Propogation Ltd (United Kingdom) through the International Association for the Exchange of Students for Technical Experience (IAESTE). She has worked at Environmental Management and Policy Research Institute (EMPRI) as information officer for the Environmental Information Systems (ENVIS) division. Tejaswini started her PhD in environmental technology at UNESCO-IHE Institute of Water Education (Delft, the Netherlands) under the framework of the Marie Sklodowska-Curie European Joint Doctorate (EJD) in Advanced Biological Waste-to-Energy Technologies (ABWET), supported by Horizon 2020. During her PhD, she carried out a part of her research at Tampere University of Technology (Tampere, Finland). Her research focused on anaerobic treatment of methanol rich waste-gases and wastewaters, bioreduction of sulfur and selenium oxyanions and to explore resource recovery through the production of methane or volatile fatty acids.