Atjaunināt sīkdatņu piekrišanu

Analog Electronics Applications: Fundamentals of Design and Analysis [Hardback]

(Glasglow Caledonian University, Scotland, United Kingdom)
  • Formāts: Hardback, 408 pages, height x width: 234x156 mm, weight: 778 g, 34 Tables, black and white; 30 Illustrations, color; 381 Illustrations, black and white
  • Izdošanas datums: 23-Aug-2016
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1498714951
  • ISBN-13: 9781498714952
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 249,78 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 408 pages, height x width: 234x156 mm, weight: 778 g, 34 Tables, black and white; 30 Illustrations, color; 381 Illustrations, black and white
  • Izdošanas datums: 23-Aug-2016
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1498714951
  • ISBN-13: 9781498714952
Citas grāmatas par šo tēmu:
Fernandez-Canque starts with a top-down approach to provide learners with an understanding of what is globally required from electronic systems. Then he switches to a bottom-up approach to include detailed circuit analysis showing students how circuits operation. He designed the material to cover the first two years of an electrical and electronic engineering university degree. His topics include analog electronics applications and design, the small-signal analysis of an amplifier under different models, field effect transistor biasing, feedback in amplifiers, and the computer-aided simulation of practical assignment. Annotation ©2016 Ringgold, Inc., Portland, OR (protoview.com)

This comprehensive text discusses the fundamentals of analog electronics applications, design, and analysis. Unlike the physics approach in other analog electronics books, this text focuses on an engineering approach, from the main components of an analog circuit to general analog networks. Concentrating on development of standard formulae for conventional analog systems, the book is filled with practical examples and detailed explanations of procedures to analyze analog circuits. The book covers amplifiers, filters, and op-amps as well as general applications of analog design.

Recenzijas

"Although, there are several textbooks available on analog electronics, this is one of the few books which provides a clear, concise explanations of complex concepts of analog circuits in a simple way through practical examples. This book covers comprehensively the main aspects of analog components, circuits and applications." Ali Ahmadinia, California State University San Marcos, USA

"It is an extremely comprehensive book covering all aspects of analogue electronics at the undergraduate level. It also includes review material on the prerequisites like circuit theory. Important topics which are often covered briefly or omitted in other books, like feedback, transistor models and active filters, to name a few, are fully developed in this book." Carlos Gamio, Glasgow Caledonian University, Scotland

"The chapters of the textbook...represent a good basis of study for junior undergraduate students of electrical and electronic engineering. The content is, in general, accurate and relevant." Barry Beggs, Glasgow Caledonian University, Scotland "Although, there are several textbooks available on analog electronics, this is one of the few books which provides a clear, concise explanations of complex concepts of analog circuits in a simple way through practical examples. This book covers comprehensively the main aspects of analog components, circuits and applications." Ali Ahmadinia, California State University San Marcos, USA

"It is an extremely comprehensive book covering all aspects of analogue electronics at the undergraduate level. It also includes review material on the prerequisites like circuit theory. Important topics which are often covered briefly or omitted in other books, like feedback, transistor models and active filters, to name a few, are fully developed in this book." Carlos Gamio, Glasgow Caledonian University, Scotland

"The chapters of the textbook...represent a good basis of study for junior undergraduate students of electrical and electronic engineering. The content is, in general, accurate and relevant." Barry Beggs, Glasgow Caledonian University, Scotland

Preface xix
Acknowledgments xxi
Author xxiii
Chapter 1 Analog Electronics Applications and Design 1(10)
1.1 Introduction to Analog Electronics
1(1)
1.2 Analog Signals
1(1)
1.3 Analog Systems
2(1)
1.4 Application and Design of Analog Systems
3(6)
1.4.1 Customer Requirements
3(1)
1.4.2 Top-Level Specifications
4(1)
1.4.3 System Design Approach
4(1)
1.4.3.1 Top-Level Design
5(1)
1.4.3.2 Detailed Design
5(1)
1.4.4 Technology Choice
5(1)
1.4.4.1 System Testing
6(1)
1.4.4.2 Social and Environmental Implications
6(1)
1.4.4.3 Documentation
6(1)
1.4.5 Distortion and Noise
6(2)
1.4.5.1 Noise
7(1)
1.4.5.2 Distortion
7(1)
1.4.6 Electronic Design Aids
8(1)
1.5 Key Points
9(2)
Chapter 2 Electric Circuits 11(24)
2.1 Introduction
11(1)
2.2 Units
11(4)
2.2.1 Unit of Charge
12(1)
2.2.2 Unit of Force
12(1)
2.2.3 Unit of Energy
12(1)
2.2.4 Unit of Power
13(1)
2.2.5 Unit of Electric Voltage
13(1)
2.2.6 Unit of Resistance and Conductance
13(2)
2.3 Concept of Electric Charge and Current
15(1)
2.4 Movement of Electrons and Electric Current in a Circuit
16(1)
2.4.1 Circuit
16(1)
2.4.2 Electromotive Force
17(1)
2.4.3 Source
17(1)
2.4.4 Load
17(1)
2.5 Passive Components: Resistance, Inductance, and Capacitance
17(12)
2.5.1 Resistance
17(4)
2.5.1.1 Resistors Connected in Series and Parallel
19(1)
2.5.1.2 Resistors Connected in Series
19(1)
2.5.1.3 Resistor Connected in Parallel
19(1)
2.5.1.4 Special Case
20(1)
2.5.2 Capacitance
21(5)
2.5.2.1 Capacitors in Parallel
24(1)
2.5.2.2 Capacitors in Series
24(2)
2.5.3 Inductors
26(3)
2.5.3.1 Inductors in Series
27(1)
2.5.3.2 Inductors in Parallel
28(1)
2.5.3.3 Energy Storage W in an Inductor
29(1)
2.5.4 Application: Inductive Proximity Sensors
29(1)
2.6 Active Components of a Circuit: Sources
29(3)
2.6.1 Ideal Voltage Source
30(1)
2.6.2 Practical Voltage Source
30(1)
2.6.3 Voltage Sources Connected in Series
31(1)
2.6.4 Voltage Sources Connected in Parallel
31(1)
2.6.4.1 Ideal Current Source
31(1)
2.6.4.2 Practical Current Source
31(1)
2.7 Electric Circuits/Networks
32(2)
2.7.1 Selection of Components
34(1)
2.8 Key Points
34(1)
Chapter 3 Circuit Analysis 35(42)
3.1 Concept of Steady State and Transient Solutions
35(1)
3.2 DC Circuits
36(24)
3.2.1 Kirchhoff's Current Law Applied to Electric Circuits: KCL
36(5)
3.2.2 Kirchhoff's Voltage Law Applied to Electric Circuits: KVL
41(19)
3.2.2.1 The Voltage and Current Divider
58(2)
3.3 AC Circuits
60(16)
3.3.1 Origin of Phasor Domain
62(2)
3.3.2 Application of Kirchhoff's Law to ac Circuits
64(13)
3.3.2.1 Impedance Z
64(1)
3.3.2.2 Impedance of an Inductor
65(1)
3.3.2.3 Impedance of a Capacitance
66(1)
3.3.2.4 Impedance of a Resistance
67(1)
3.3.2.5 Reactance X
68(1)
3.3.2.6 Polar—Cartesian Forms
69(1)
3.3.2.7 Cartesian to Polar Form
69(1)
3.3.2.8 Polar to Cartesian
69(1)
3.3.2.9 Phasor Diagrams
70(6)
3.4 Key Points
76(1)
Chapter 4 Diodes 77(18)
4.1 Introduction
77(1)
4.2 Semiconductor Material
77(3)
4.2.1 Conductivity and Energy Bands in Semiconductors
77(2)
4.2.2 Doping
79(1)
4.3 p—n Junction
80(1)
4.4 Diode Current—Voltage Characteristics I—V
81(2)
4.4.1 Forward Bias
81(1)
4.4.2 Reverse Bias
82(1)
4.5 Different Types of Diodes
83(2)
4.5.1 Semiconductor Diodes
83(1)
4.5.2 Zener Diodes
84(1)
4.5.3 Avalanche Diodes
84(1)
4.5.4 Light-Emitting Diodes
84(1)
4.5.5 Tunnel Diodes
84(1)
4.5.6 Gunn Diodes
84(1)
4.5.7 Peltier Diodes
84(1)
4.5.8 Photodiodes
85(1)
4.5.9 Solar Cell
85(1)
4.5.10 Schottky Diodes
85(1)
4.6 Diode Applications
85(9)
4.6.1 Rectification
85(1)
4.6.2 Half-Wave Rectifiers
86(1)
4.6.3 Full-Wave Rectifiers
87(1)
4.6.4 Single-Phase Bridge Rectifier Circuit
87(5)
4.6.5 Diode as Voltage Limiter
92(1)
4.6.6 Voltage Doubler
93(1)
4.7 Testing Diodes
94(1)
4.8 Key points
94(1)
Reference
94(1)
Chapter 5 Bipolar Junction Transistor 95(18)
5.1 Introduction
95(1)
5.2 Bipolar Junction Transistor
95(3)
5.3 BJT Characteristics
98(4)
5.3.1 Transistor Configurations
98(1)
5.3.2 Input Characteristics
98(1)
5.3.3 Output Characteristics
98(2)
5.3.4 Data for a Typical NPN Transistor
100(1)
5.3.5 Rating and Selection of Operating Point
101(1)
5.4 Gain Parameters of BJT: Relationship of α and β Parameters
102(4)
5.4.1 Common Base Connection
102(1)
5.4.2 Common Emitter Configuration
103(3)
5.5 Testing Transistors
106(1)
5.6 Efficient BJT as Amplification Device
106(5)
5.6.1 Emitter Injection Efficiency η
108(1)
5.6.2 Base Transport Factor χ
109(2)
5.6.3 Punch-Through
111(1)
5.7 Key Points
111(1)
Reference
111(2)
Chapter 6 Field Effect Transistors 113(16)
6.1 Introduction
113(1)
6.2 Fabrication of FET
113(1)
6.3 Different Types of FET
114(1)
6.3.1 Insulated-Gate FETs
114(1)
6.3.2 Junction Gate FETs
115(1)
6.3.3 FET Circuit Symbols
115(1)
6.4 MOS FET
115(5)
6.4.1 The MOS IGFET
115(1)
6.4.2 MOS Operation
116(1)
6.4.3 Accumulation
117(1)
6.4.4 Depletion
118(1)
6.4.5 Strong Inversion
119(1)
6.4.6 Threshold Voltage, VT
120(1)
6.5 JFET Operation
120(3)
6.6 Static Characteristics of FET
123(1)
6.6.1 Input Characteristics
123(1)
6.6.2 Output Characteristics
123(1)
6.6.3 Transfer Characteristics
123(1)
6.7 Current—Voltage Characteristics
123(3)
6.7.1 Saturation
124(2)
6.8 Key Points
126(3)
Chapter 7 Bipolar Junction Transistor Biasing 129(16)
7.1 Introduction
129(1)
7.2 Load Line
129(4)
7.2.1 Cut Off
132(1)
7.2.2 Saturation
132(1)
7.3 Biasing a BJT
133(11)
7.3.1 Fixed Bias
133(4)
7.3.2 Auto Bias
137(4)
7.3.3 Collector-Feedback Bias
141(2)
7.3.4 Two Sources
143(1)
7.4 Key Points
144(1)
Chapter 8 Modeling Transistors 145(8)
8.1 Introduction
145(1)
8.2 Hybrid h Parameters
145(3)
8.2.1 h Parameters Common Emitter Configuration
146(2)
8.3 Admittance Y Parameters
148(1)
8.4 General Three-Parameter Model
149(1)
8.5 T-Equivalent Two-Parameter Model
149(2)
8.5.1 AC-Simple T-Parameters Transistor Model
149(1)
8.5.2 Emitter Resistance, re (Small Signal)
150(1)
8.6 Mutual Conductance Model
151(1)
8.7 Key Points
152(1)
Chapter 9 Small-Signal Analysis of an Amplifier under Different Models 153(26)
9.1 Introduction
153(1)
9.2 Analysis of Transistor Amplifiers Using h Parameters
153(5)
9.2.1 Current Gain, Gi
154(1)
9.2.2 Input Impedance, Zi
155(1)
9.2.3 Voltage Gain, Gv
156(1)
9.2.4 Output Impedance, Zo
156(1)
9.2.5 Power Gain, Gp
157(1)
9.3 Small-Signal Practical CE Amplifier under h-Parameter Model
158(7)
9.3.1 Fixed Bias Amplifier
158(1)
9.3.2 Auto Bias Amplifier
159(6)
9.3.2.1 Voltage Gain
161(1)
9.3.2.2 Current Gain
161(1)
9.3.2.3 Power Gain
162(3)
9.4 Analysis of Transistor Amplifiers Using Y Parameters
165(3)
9.4.1 Voltage Gain, Gv
166(1)
9.4.2 Current Gain, Gi
166(1)
9.4.3 Power Gain, Gp
166(2)
9.5 Analysis of Transistor Amplifiers Using the General Three-Parameter Model
168(4)
9.5.1 Voltage Gain, Gv
168(1)
9.5.2 Current Gain, Gi
169(1)
9.5.3 Power Gain, Gp
170(2)
9.6 Analysis of Transistor Amplifiers Using the T-Model Two-Parameters
172(6)
9.6.1 Voltage Gain, Gv
172(1)
9.6.1.1 CE Amplifier Using T Parameters
172(1)
9.6.2 Current Gain, Gi
173(1)
9.6.3 Input Impedance, Zi
173(1)
9.6.4 Output Impedance, Zo
174(3)
9.6.4.1 Effect of a Load Resistance
175(1)
9.6.4.2 Effect of the Source Resistance
175(2)
9.6.5 Power Gain, Gp
177(1)
9.7 Key Points
178(1)
Chapter 10 Amplifiers Frequency Response 179(12)
10.1 Introduction
179(1)
10.2 Half-Power Gain, Concept of 3 dB
179(3)
10.3 CE Amplifier at Low Frequency
182(3)
10.3.1 Voltage Gain at Low Frequency
182(1)
10.3.2 Low-Frequency Cutoff
183(1)
10.3.3 Phase Change at Low Frequency
184(1)
10.3.3.1 Effect of the Other Capacitance on the Low-Frequency Response
184(1)
10.4 CE Amplifier at High Frequency
185(2)
10.4.1 Voltage Gain at High Frequency
185(2)
10.4.2 High-Frequency Cutoff
187(1)
10.4.3 Phase Change at High Frequency
187(1)
10.5 Total Frequency Response
187(2)
10.6 Key Points
189(2)
Chapter 11 Common Collector Amplifier/Emitter Follower 191(6)
11.1 Voltage Gain, GvCC
191(3)
11.2 Current Gain, GiCC
194(1)
11.3 Input Impedance, ZiCC
194(1)
11.4 Power Gain, GPCC
195(1)
11.5 Key Points
196(1)
Chapter 12 Common Base Amplifier 197(4)
12.1 Common Base Amplifiers under h Parameters
197(1)
12.2 Voltage Gain, GvCB
198(1)
12.3 Current Gain, GiCB
199(1)
12.4 Power Gain, GPCB
199(1)
12.5 Key Points
200(1)
Chapter 13 Common Emitter Amplifier in Cascade 201(12)
13.1 Introduction
201(1)
13.2 Overall Gain of Amplifiers in Cascade
201(4)
13.2.1 Voltage Gain of the Last Stage n
202(1)
13.2.2 Voltage Gain for the (n — 1) Stages
202(1)
13.2.3 "Voltage" Gain of the Source
203(2)
13.3 Frequency Response
205(7)
13.3.1 Low-Frequency Cutoff
205(3)
13.3.1.1 Frequency Cutoff of Last Stage
205(1)
13.3.1.2 Frequency Cutoff for 1 to (n — 1) Stages
206(1)
13.3.1.3 Frequency Cutoff Input Circuit First Stage
206(2)
13.3.2 High-Frequency Cutoff
208(5)
13.3.2.1 Frequency Cutoff of Last Stage
208(1)
13.3.2.2 High-Frequency Cutoff for 1 to (n — 1) Stages
209(1)
13.3.2.3 Frequency Cutoff Input Circuit First Stage
209(3)
13.4 Key Points
212(1)
Chapter 14 Field Effect Transistor Biasing 213(10)
14.1 Introduction
213(1)
14.2 MOSFET Biasing
213(4)
14.2.1 Depletion MOSFET
213(1)
14.2.2 Enhancement MOSFET
214(3)
14.2.2.1 Drain-Feedback Bias
216(1)
14.3 JFET Biasing
217(3)
14.3.1 Self-Bias
217(2)
14.3.2 Voltage Divider Bias
219(1)
14.4 Key Points
220(3)
Chapter 15 Field Effect Transistor as Amplifiers 223(14)
15.1 Introduction
223(1)
15.2 Common Source Amplifier
223(6)
15.2.1 AC Voltage Gain at Medium Frequencies
223(4)
15.2.2 AC Voltage Gain at High Frequencies
227(1)
15.2.3 Input Impedance at High Frequency
228(1)
15.3 Common Drain (Source Follower)
229(6)
15.3.1 AC Voltage Gain at Medium Frequency
229(3)
15.3.2 AC Voltage Gain at High Frequency
232(1)
15.3.3 Input Impedance at High Frequency
233(1)
15.3.4 Output Impedance at High Frequency
234(1)
15.4 Key Points
235(2)
Chapter 16 Transfer Function and Bode Diagrams 237(14)
16.1 Introduction
237(1)
16.2 Transfer Functions
237(6)
16.2.1 Examples of Transfer Functions Passive Components
237(1)
16.2.2 First-Order Low-Pass Transfer Function
238(1)
16.2.3 First-Order High-Pass Transfer Function
239(4)
16.3 Bode Plots
243(2)
16.3.1 Magnitude Bode Plot
243(1)
16.3.2 Transfer Function = TF = K (Constant)
244(1)
16.3.3 Transfer Function = TF = j2πf
245(1)
16.3.4 Transfer Function = TF = (1 + jf/fp)
245(1)
16.4 Idealized Bode Plots
245(2)
16.4.1 Magnitude Asymptotic
245(1)
16.4.2 Bode Plot Asymptotic Phase
246(1)
16.5 Construction of Bode Plots
247(1)
16.6 Bode Plot Example
247(3)
16.7 Key Points
250(1)
Chapter 17 Feedback in Amplifiers 251(20)
17.1 Introduction
251(1)
17.2 Negative Feedback
251(18)
17.2.1 Series Voltage NFB
253(5)
17.2.1.1 Series Voltage NFB Voltage Gain
254(1)
17.2.1.2 Series Voltage NFB Effects on Input Impedance
254(1)
17.2.1.3 Series Voltage NFB Effects on Output Impedance
255(1)
17.2.1.4 Series Voltage NFB Effects on Frequency Response
255(2)
17.2.1.5 Series Voltage NFB Effects on Internal Distortion
257(1)
17.2.1.6 Series Voltage NFB Current Gain
257(1)
17.2.2 Series Current NFB
258(2)
17.2.2.1 Series Current NFB Voltage Gain
259(1)
17.2.2.2 Series Current NFB Current Gain
260(1)
17.2.2.3 Series Current NFB Effects on Input Impedance
260(1)
17.2.2.4 Series Current NFB Effects on Output Impedance
260(1)
17.2.3 Parallel Voltage NFB
260(3)
17.2.3.1 Parallel Voltage NFB Voltage Gain
261(1)
17.2.3.2 Parallel Voltage NFB Current Gain
261(1)
17.2.3.3 Parallel Voltage NFB Effects on Input Impedance
262(1)
17.2.3.4 Parallel Voltage NFB Effects on Output Impedance
262(1)
17.2.4 Parallel Current NFB
263(20)
17.2.4.1 Parallel Current NFB Current Gain
263(1)
17.2.4.2 Parallel Current NFB Effects on Input Impedance
264(1)
17.2.4.3 Parallel Current NFB Effects on Output Impedance
264(1)
17.2.4.4 Parallel Current NFB Voltage Gain
265(4)
17.3 Key Points
269(2)
Chapter 18 Differential Amplifiers 271(10)
18.1 Introduction
271(1)
18.2 Single Input Voltage
271(3)
18.3 Differential-Mode Voltage Gain
274(1)
18.4 Common Mode Voltage Gain: Effect on Noise
274(2)
18.5 Common Mode Rejection Ratio
276(2)
18.6 Key Points
278(3)
Chapter 19 Operational Amplifiers 281(24)
19.1 Introduction
281(2)
19.2 Op-Amps Characteristics
283(2)
19.2.1 Offset Null Circuit
284(1)
19.2.2 Compensation Circuit
285(1)
19.2.3 Slew Rate
285(1)
19.3 Op-Amp Gain
285(1)
19.4 Inverting Amplifier
285(7)
19.4.1 Inverting Amplifier Voltage Gain
285(2)
19.4.2 Virtual Earth
287(2)
19.4.3 Input Impedance
289(1)
19.4.4 Output Impedance
290(1)
19.4.5 Bias Equalization
290(2)
19.5 Noninverting Amplifier
292(4)
19.5.1 Noninverting Amplifier Voltage Gain
292(3)
19.5.2 Input Impedance
295(1)
19.5.3 Output Impedance
295(1)
19.5.4 Voltage Follower
296(1)
19.6 The Differential Amplifier
296(5)
19.6.1 Differential Amplifier Voltage Gain
297(11)
19.6.1.1 Op-Amp as Comparator
299(1)
19.6.1.2 The Summing Amplifier
300(1)
19.7 Op-Amp Frequency Response
301(2)
19.8 Key Points
303(2)
Chapter 20 Filters 305(18)
20.1 Introduction
305(3)
20.2 Low-Pass Filter Responses
308(3)
20.2.1 Single First-Order Low-Pass Filter
308(2)
20.2.2 Second-Order Low-Pass Filters
310(1)
20.2.3 Sallen and Key Low-Pass Filter
310(1)
20.3 High-Pass Filter Response
311(3)
20.3.1 First-Order High-Pass Filter
311(1)
20.3.2 Second-Order Filters
312(1)
20.3.3 Sallen and Key High-Pass Filter
313(1)
20.4 Band-Pass Filter Response
314(1)
20.5 Band-Stop Response
314(1)
20.6 Fourth-Order Response
315(1)
20.7 Filter Response Characteristics
316(1)
20.8 Filter Design using Standard Tables
316(6)
20.8.1 Bessel
318(1)
20.8.1.1 First Second-Order Filter
318(1)
20.8.1.2 Second Second-Order Filter
318(1)
20.8.2 Butterworth
319(1)
20.8.3 Chebyshev
320(4)
20.8.3.1 First Second-Order Filter
320(1)
20.8.3.2 Second Second-Order Filter
321(1)
20.9 Key Points
322(1)
References
322(1)
Chapter 21 Applications of Analog Electronics 323(32)
21.1 Introduction
323(1)
21.2 Simulation in Circuit Applications
323(1)
21.3 Selection of Components and Circuit Elements in an Application
324(3)
21.3.1 Transistors
325(1)
21.3.2 Resistors
325(1)
21.3.3 Capacitors
326(1)
21.3.4 Inductors
326(1)
21.3.5 Nominal Preferred Values
326(1)
21.4 Building and Realization of a Circuit
327(2)
21.5 Testing—Troubleshooting
329(1)
21.5.1 Testing
329(1)
21.5.2 Troubleshooting
329(1)
21.6 Analog Electronic Applications Examples
330(24)
21.6.1 DC Power Supply
330(4)
21.6.1.1 Description
330(1)
21.6.1.2 The Transformer Stage
330(1)
21.6.1.3 Rectifier Stage
331(1)
21.6.1.4 Filter Smoothing Stage
331(1)
21.6.1.5 Regulator Stage
332(2)
21.6.2 Audio Amplifier
334(7)
21.6.2.1 Description
334(1)
21.6.2.2 Design of a Class A Amplifier
334(7)
21.6.3 Sallen and Key Second-Order Butterworth Low-Pass Filter
341(1)
21.6.3.1 Description
341(1)
21.6.4 Automatic Switch on of Lamp in the Dark Using a BJT
342(1)
21.6.4.1 Description
342(1)
21.6.5 Automatic Switch on of a Lamp in the Dark Using Op-Amp
343(1)
21.6.5.1 Description
343(1)
21.6.6 Automatic Switch-On of Lamp in the Presence of Light Using a BJT
344(1)
21.6.6.1 Description
344(1)
21.6.7 Automatic Switch-On of Lamp in the Presence of Light Using an Op-Amp
345(1)
21.6.7.1 Description
345(1)
21.6.8 Humidity Detector
346(1)
21.6.8.1 Description
346(1)
21.6.9 Delay Switch
347(1)
21.6.9.1 Description
347(1)
21.6.10 Smoke Detector
348(1)
21.6.10.1 Description
348(1)
21.6.11 Multivibrators and the 555 Timer
348(3)
21.6.11.1 A stable Multivibrator
348(3)
21.6.12 Humidity Detector Using 555 Timer
351(1)
21.6.12.1 Description
351(1)
21.6.13 Two-Tone Musical Instrument Using 555 Timers
352(1)
21.6.13.1 Description
352(1)
21.6.14 Automatic Switch-On of Lamp in the Presence of Light Using a 555 Timer
352(7)
21.6.14.1 Description
352(2)
21.7 Key Points
354(1)
References
354(1)
Chapter 22 Future Trend of Analog Electronics 355(10)
22.1 Introduction
355(1)
22.2 Reconfigurable Analog Circuitry
356(2)
22.3 Analog Devices at High Power
358(1)
22.4 Future Advances in Applications of Analog Electronics
359(1)
22.4.1 Nanotechnology
359(1)
22.4.2 New Analog Building Block Working Voltage Under 1 V
359(1)
22.4.3 Analog Electronics Sees a Revival in the Music Industry
359(1)
22.4.4 New Type of Analog Computing
360(1)
22.4.5 Biotechnology
360(1)
22.5 Key points
360(1)
References
361(4)
Chapter 23 Computer-Aided Simulation of Practical Assignment 365(32)
23.1 Introduction
365(1)
23.2 First Introduction to Using Pspice
366(4)
23.2.1 Circuit Creation/Schematics
367(1)
23.2.2 To Connect the Components
367(1)
23.2.3 Names to Elements
368(1)
23.2.4 Running a Simulation
369(1)
23.2.5 DC Analysis
370(1)
23.3 Practical Assignments Using Pspice
370(26)
23.3.1 Assignment
1. DC Networks: Bias Point Analysis
371(3)
23.3.1.1 Experiment 23.1
371(1)
23.3.1.2 Experiment 23.2
372(1)
23.3.1.3 Experiment 23.3
372(2)
23.3.2 Assignment
2. AC Networks: AC Sweep
374(3)
23.3.2.1 Experiment 23.4
374(1)
23.3.2.2 Experiment 23.5
374(2)
23.3.2.3 Experiment 23.6
376(1)
23.3.3 Assignment
3. BJT Operating Point, Q, Stability
377(3)
23.3.3.1 Experiment 23.7
378(2)
23.3.4 Assignment
4. BJT Amplifier Analysis
380(6)
23.3.4.1 Experiment 23.8
381(1)
23.3.4.2 Experiment 23.9
382(4)
23.3.5 Assignment
5. FET Amplifier Analysis and Differential Amplifier
386(5)
23.3.5.1 Experiment 23.10
386(1)
23.3.5.2 Experiment 23.11
387(4)
23.3.6 Assignment
6. Active Filter—Power Amplifier
391(5)
23.3.6.1 Experiment 23.12
391(1)
23.3.6.2 Experiment 23.13
392(1)
23.3.6.3 Experiment 23.14
393(3)
23.3.6.4 Experiment 23.15
396(1)
23.4 Key Points
396(1)
References
396(1)
Index 397
Hernando Lautaro Fernandez-Canque completed his first degree at the University of Chile, Faculty of Engineering, Science and Mathematics, where he also taught electronics. He received a BEng in Electrical and Electronics Engineering at the University of Glasgow, a MEng degree in Solid State Electronics at UMIST Manchester, and PhD from Sheffield University. He has lectured in the University of Chile, University of Sheffield in UK, University of Oviedo in Spain, University of Cluj-Napoca Romania and as senior lecturer taught analog electronics for over 28 years at Glasgow Caledonian University in Scotland.