Acknowledgements |
|
xv | |
Preface |
|
xvii | |
Notation |
|
xix | |
1 Introduction |
|
1 | (10) |
|
1.1 History and motivation |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.3 Introduction to the Cormorant data set |
|
|
3 | (3) |
|
1.3.1 Capture-recapture-recovery data |
|
|
4 | (2) |
|
1.3.2 Nest counts and productivity |
|
|
6 | (1) |
|
1.4 Modelling population dynamics |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
8 | (3) |
|
1.6.1 History and aspects of bird ringing |
|
|
8 | (1) |
|
1.6.2 Reviews, books and websites |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
9 | (2) |
2 Model fitting, averaging and comparison |
|
11 | (16) |
|
|
11 | (2) |
|
2.1.1 Forming likelihoods |
|
|
11 | (1) |
|
2.1.2 Bayes theorem and methods |
|
|
12 | (1) |
|
2.1.3 Iterative methods and parameterisation |
|
|
12 | (1) |
|
|
13 | (6) |
|
2.2.1 Point and interval estimation using maximum likelihood |
|
|
13 | (2) |
|
|
15 | (1) |
|
|
15 | (1) |
|
|
15 | (3) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
19 | (4) |
|
|
19 | (1) |
|
2.3.2 Metropolis Hastings |
|
|
20 | (1) |
|
|
21 | (1) |
|
2.3.4 Using MCMC simulations |
|
|
21 | (1) |
|
2.3.5 Model probabilities and model averaging |
|
|
22 | (1) |
|
2.3.6 Reversible jump Markov chain Monte Carlo |
|
|
22 | (1) |
|
2.3.7 Hierarchical models |
|
|
22 | (1) |
|
2.3.8 Goodness-of-fit: Bayesian p-values and calibrated simulation |
|
|
23 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (3) |
3 Estimating the size of closed populations |
|
27 | (30) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
28 | (2) |
|
|
28 | (2) |
|
3.3 Analysis of Schnabel census data |
|
|
30 | (5) |
|
3.3.1 Likelihoods based on the multinomial distribution |
|
|
30 | (1) |
|
3.3.2 Modelling based on the Poisson distribution, and relationship to the multinomial |
|
|
30 | (1) |
|
3.3.3 Chao's lower-bound estimator |
|
|
31 | (2) |
|
3.3.4 Conditional analysis |
|
|
33 | (1) |
|
3.3.5 Relationship between conditional and unconditional Poisson and multinomial analyses |
|
|
34 | (1) |
|
|
35 | (3) |
|
|
35 | (1) |
|
3.4.2 Time-dependent capture probability: model class, Mt |
|
|
36 | (1) |
|
3.4.3 Behavioural capture probability: model class, Mb |
|
|
37 | (1) |
|
3.5 Accounting for unobserved heterogeneity |
|
|
38 | (5) |
|
|
38 | (2) |
|
3.5.2 Horvitz-Thompson estimator |
|
|
40 | (2) |
|
3.5.3 Horvitz-Thompson-like estimator |
|
|
42 | (1) |
|
3.5.4 Other approaches to modelling heterogeneity |
|
|
43 | (1) |
|
3.6 Logistic-linear models |
|
|
43 | (2) |
|
3.7 Spuriously large estimates |
|
|
45 | (1) |
|
|
45 | (1) |
|
3.9 Medical and social applications |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
3.11 N-mixture estimators |
|
|
47 | (1) |
|
3.12 Spatial capture-recapture models |
|
|
48 | (3) |
|
3.12.1 Likelihood formation for a spatial capture-recapture model |
|
|
48 | (1) |
|
3.12.2 Modelling animal locations |
|
|
49 | (1) |
|
3.12.3 Modelling the capture probability |
|
|
50 | (1) |
|
3.12.4 Alternative estimation methods |
|
|
50 | (1) |
|
3.12.5 Applications of spatial capture-recapture models |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
52 | (2) |
|
|
54 | (3) |
4 Survival modelling: single-site models |
|
57 | (30) |
|
|
57 | (2) |
|
|
59 | (10) |
|
|
60 | (1) |
|
|
61 | (2) |
|
4.2.3 Full age-dependence in survival: the Cormack-Seber model |
|
|
63 | (1) |
|
4.2.4 Model selection for mark-recovery models |
|
|
63 | (5) |
|
4.2.5 Extensions of recovery models |
|
|
68 | (1) |
|
4.3 Mark-recapture models |
|
|
69 | (5) |
|
4.3.1 Cormack-Jolly-Seber model |
|
|
70 | (1) |
|
4.3.2 Explicit maximum-likelihood estimates for the CJS model |
|
|
70 | (2) |
|
4.3.3 Bayesian estimation for CJS model |
|
|
72 | (1) |
|
4.3.4 Incorporating heterogeneity in the CJS model |
|
|
73 | (1) |
|
4.3.5 Age-dependent models in capture recapture |
|
|
73 | (1) |
|
4.4 Combining separate mark-recapture and recovery data sets |
|
|
74 | (1) |
|
4.5 Joint recapture-recovery models |
|
|
75 | (6) |
|
4.5.1 Extensions of joint recapture-recovery models |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
|
83 | (4) |
5 Survival modelling: multisite models |
|
87 | (20) |
|
|
87 | (1) |
|
5.2 Matrix representation |
|
|
88 | (1) |
|
5.3 Multisite joint recapture-recovery models |
|
|
89 | (3) |
|
5.4 Multistate models as a unified framework |
|
|
92 | (2) |
|
5.5 Extensions to multistate models |
|
|
94 | (3) |
|
5.5.1 Models with unobservable states |
|
|
94 | (2) |
|
|
96 | (1) |
|
5.6 Model selection for multisite models |
|
|
97 | (2) |
|
|
99 | (3) |
|
5.7.1 A unified framework |
|
|
100 | (2) |
|
5.7.2 Applications of multievent models |
|
|
102 | (1) |
|
|
102 | (1) |
|
|
103 | (1) |
|
|
103 | (1) |
|
|
104 | (3) |
6 Occupancy modelling |
|
107 | (14) |
|
|
107 | (2) |
|
6.2 The two-parameter occupancy model |
|
|
109 | (2) |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
111 | (1) |
|
|
111 | (1) |
|
6.3.3 Citizen science and presence-only data |
|
|
111 | (1) |
|
6.4 Moving from species to individual: abundance-induced hetero- geneity |
|
|
112 | (1) |
|
6.5 Accounting for spatial information |
|
|
112 | (3) |
|
6.5.1 Poisson process model |
|
|
113 | (1) |
|
6.5.2 Markov modulated Poisson process |
|
|
114 | (1) |
|
6.6 Accounting for spatial information |
|
|
115 | (2) |
|
6.6.1 Abundance-induced heterogeneity along a transect |
|
|
116 | (1) |
|
6.6.2 Incorporating clustering |
|
|
116 | (1) |
|
|
117 | (1) |
|
|
117 | (1) |
|
|
118 | (1) |
|
|
118 | (3) |
7 Covariates and random effects |
|
121 | (28) |
|
|
121 | (1) |
|
|
122 | (2) |
|
|
122 | (2) |
|
|
124 | (2) |
|
7.4 Individual covariates |
|
|
126 | (6) |
|
7.4.1 Estimating N: observed heterogeneity |
|
|
127 | (1) |
|
7.4.2 Dealing with missing information: a classical approach to dealing with time-varying individual covariates in open populations |
|
|
128 | (4) |
|
7.4.3 Dealing with missing information: a Bayesian approach and comparison |
|
|
132 | (1) |
|
|
132 | (4) |
|
|
136 | (1) |
|
|
136 | (2) |
|
|
138 | (1) |
|
|
138 | (3) |
|
|
139 | (1) |
|
7.9.2 The Bayesian approach to model selection |
|
|
140 | (1) |
|
|
141 | (2) |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
144 | (1) |
|
|
145 | (4) |
8 Simultaneous estimation of survival and abundance |
|
149 | (16) |
|
|
149 | (1) |
|
8.2 Estimating abundance in open populations |
|
|
149 | (4) |
|
8.2.1 The original Jolly-Seber model |
|
|
150 | (1) |
|
8.2.2 The Schwarz and Arnason formulation |
|
|
151 | (1) |
|
8.2.3 Alternative Jolly-Seber formulations |
|
|
152 | (1) |
|
|
153 | (1) |
|
|
154 | (4) |
|
8.4.1 Closed robust design model |
|
|
154 | (3) |
|
8.4.2 Open robust design model |
|
|
157 | (1) |
|
|
158 | (3) |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
162 | (3) |
9 Goodness-of-fit assessment |
|
165 | (22) |
|
|
165 | (1) |
|
9.2 Diagnostic goodness-of-fit tests |
|
|
165 | (15) |
|
9.2.1 Contingency table tests of homogeneity |
|
|
165 | (1) |
|
9.2.2 Single-site goodness-of-fit tests |
|
|
166 | (8) |
|
9.2.3 Equivalence of score tests |
|
|
174 | (1) |
|
9.2.4 Multisite goodness-of-fit tests |
|
|
175 | (4) |
|
9.2.5 Joint recapture and recovery goodness-of-fit tests |
|
|
179 | (1) |
|
9.3 Absolute goodness-of-fit tests |
|
|
180 | (3) |
|
9.3.1 Sufficient statistic goodness-of-fit tests |
|
|
180 | (3) |
|
9.3.2 Bayesian p-values and calibrated simulation |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
184 | (3) |
10 Parameter redundancy |
|
187 | (20) |
|
|
187 | (3) |
|
10.2 Using symbolic computation |
|
|
190 | (2) |
|
10.2.1 Determining the deficiency of a model |
|
|
190 | (1) |
|
10.2.2 Determining estimable parameters for parameter- redundant models |
|
|
191 | (1) |
|
10.3 Parameter redundancy and identifiability |
|
|
192 | (1) |
|
10.4 Decomposing the derivative matrix of full rank models |
|
|
192 | (1) |
|
|
193 | (1) |
|
10.6 The moderating effect of data |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
195 | (1) |
|
|
195 | (2) |
|
10.8 Exhaustive summaries and model taxonomies |
|
|
197 | (1) |
|
|
198 | (4) |
|
10.9.1 A Bayesian fit for a parameter-redundant model |
|
|
198 | (2) |
|
10.9.2 Weakly identifiable parameters |
|
|
200 | (2) |
|
|
202 | (1) |
|
|
202 | (1) |
|
|
202 | (1) |
|
|
203 | (4) |
11 State-space models |
|
207 | (20) |
|
|
207 | (1) |
|
|
207 | (5) |
|
11.2.1 Constructing Leslie matrices: the order of biological processes |
|
|
211 | (1) |
|
11.3 Fitting linear Gaussian models |
|
|
212 | (3) |
|
11.3.1 The stochastic Gompertz model |
|
|
212 | (1) |
|
11.3.2 Linear Gaussian models |
|
|
213 | (1) |
|
|
214 | (1) |
|
11.3.4 Initialising the filter |
|
|
215 | (1) |
|
11.4 Models which are not linear Gaussian |
|
|
215 | (2) |
|
11.4.1 Conditionally Gaussian models |
|
|
216 | (1) |
|
11.5 Bayesian methods for state-space models |
|
|
217 | (1) |
|
11.6 Formulation of capture-reencounter models |
|
|
218 | (3) |
|
11.6.1 Capture-recapture data |
|
|
219 | (1) |
|
11.6.2 Ring-recovery data |
|
|
220 | (1) |
|
11.6.3 Multistate capture-recapture models |
|
|
221 | (1) |
|
11.7 Formulation of occupancy models |
|
|
221 | (1) |
|
|
222 | (1) |
|
|
222 | (1) |
|
|
223 | (1) |
|
|
224 | (3) |
12 Integrated population modelling |
|
227 | (14) |
|
|
227 | (2) |
|
12.1.1 Multiplying likelihoods |
|
|
229 | (1) |
|
12.2 Normal approximations of component likelihoods |
|
|
229 | (2) |
|
12.2.1 Multivariate normal approximation to capture re-encounter likelihoods |
|
|
230 | (1) |
|
|
231 | (1) |
|
12.4 Goodness-of-fit for integrated population modelling; calibrated simulation |
|
|
231 | (1) |
|
12.5 Previous applications |
|
|
231 | (4) |
|
12.6 Hierarchical modelling |
|
|
235 | (1) |
|
|
236 | (1) |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
238 | (3) |
A Distributions Reference |
|
241 | (2) |
References |
|
243 | (36) |
Index |
|
279 | |