Atjaunināt sīkdatņu piekrišanu

E-grāmata: Analysis and Forecasting of Financial Time Series: Selected Cases

  • Formāts: 404 pages
  • Izdošanas datums: 11-Oct-2022
  • Izdevniecība: Cambridge Scholars Publishing
  • ISBN-13: 9781527588851
  • Formāts - PDF+DRM
  • Cena: 137,74 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 404 pages
  • Izdošanas datums: 11-Oct-2022
  • Izdevniecība: Cambridge Scholars Publishing
  • ISBN-13: 9781527588851

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book brings together real-world cases illustrating how to analyse volatile financial time series in order to provide a better understanding of their past behavior and robust forecasting of their future behavioural patterns. Using time series data from diverse financial sectors, it shows how the concepts and techniques of statistical analysis, machine learning, and deep learning are applied to build robust predictive models, as well as the ways in which these models can be used for forecasting the future prices of stocks and constructing profitable portfolios of investments. All the concepts and methods used in the book have been implemented using Python and R languages on TensorFlow and Keras frameworks. The volume will be particularly useful for advanced postgraduate and doctoral students of finance, economics, econometrics, statistics, data science, computer science, and information technology.
Jaydip Sen is a Professor in Machine Learning and Artificial Intelligence at Praxis Business School, India. He has authored around 250 papers and book chapters and four books, and has edited 20 further volumes. His areas of research are applied statistical modeling, data mining and machine learning, social media analytics, artificial intelligence, and deep learning.