Atjaunināt sīkdatņu piekrišanu

E-grāmata: Analysis and Linear Algebra: The Singular Value Decomposition and Applications

  • Formāts: 217 pages
  • Sērija : Student Mathematical Library
  • Izdošanas datums: 30-Jun-2021
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470465131
  • Formāts - PDF+DRM
  • Cena: 75,36 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 217 pages
  • Sērija : Student Mathematical Library
  • Izdošanas datums: 30-Jun-2021
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470465131

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book provides an elementary analytically inclined journey to a fundamental result of linear algebra: the Singular Value Decomposition (SVD). SVD is a workhorse in many applications of linear algebra to data science. Four important applications relevant to data science are considered throughout the book: determining the subspace that ""best'' approximates a given set (dimension reduction of a data set); finding the ""best'' lower rank approximation of a given matrix (compression and general approximation problems); the Moore-Penrose pseudo-inverse (relevant to solving least squares problems); and the orthogonal Procrustes problem (finding the orthogonal transformation that most closely transforms a given collection to a given configuration), as well as its orientation-preserving version.

The point of view throughout is analytic. Readers are assumed to have had a rigorous introduction to sequences and continuity. These are generalized and applied to linear algebraic ideas. Along the way to the SVD, several important results relevant to a wide variety of fields (including random matrices and spectral graph theory) are explored: the Spectral Theorem; minimax characterizations of eigenvalues; and eigenvalue inequalities. By combining analytic and linear algebraic ideas, readers see seemingly disparate areas interacting in beautiful and applicable ways.
Preface xi
Pre-Requisites xv
Notation xvi
Acknowledgements xvii
Chapter 1 Introduction
1(12)
§1.1 Why Does Everybody Say Linear Algebra is "Useful"?
1(3)
§1.2 Graphs and Matrices
4(3)
§1.3 Images
7(2)
§1.4 Data
9(1)
§1.5 Four "Useful" Applications
9(4)
Chapter 2 Linear Algebra and Normed Vector Spaces
13(48)
§2.1 Linear Algebra
14(6)
§2.2 Norms and Inner Products on a Vector Space
20(10)
§2.3 Topology on a Normed Vector Space
30(8)
§2.4 Continuity
38(6)
§2.5 Arbitrary Norms on Rd
44(4)
§2.6 Finite-Dimensional Normed Vector Spaces
48(4)
§2.7 Minimization: Coercivity and Continuity
52(2)
§2.8 Uniqueness of Minimizers: Convexity
54(2)
§2.9 Continuity of Linear Mappings
56(5)
Chapter 3 Main Tools
61(38)
§3.1 Orthogonal Sets
61(6)
§3.2 Projection onto (Closed) Subspaccs
67(6)
§3.3 Separation of Convex Sets
73(4)
§3.4 Orthogonal Complements
77(2)
§3.5 The Riesz Representation Theorem and Adjoint Operators
79(5)
§3.6 Range and Null Spaces of L and L*
84(1)
§3.7 Four Problems, Revisited
85(14)
Chapter 4 The Spectral Theorem
99(24)
§4.1 The Spectral Theorem
99(12)
§4.2 Courant-Fischer-Weyl Min-Max Theorem for Eigenvalues
111(6)
§4.3 Weyl's Inequalities for Eigenvalues
117(2)
§4.4 Eigenvalue Interlacing
119(2)
§4.5 Summary
121(2)
Chapter 5 The Singular Value Decomposition
123(48)
§5.1 The Singular Value Decomposition
124(23)
§5.2 Alternative Characterizations of Singular Values
147(14)
§5.3 Inequalities for Singular Values
161(5)
§5.4 Some Applications to the Topology of Matrices
166(4)
§5.5 Summary
170(1)
Chapter 6 Applications Revisited
171(30)
§6.1 The "Best" Subspace for Given Data
171(8)
§6.2 Least Squares and Moore-Penrose Pseudo-Inverse
179(3)
§6.3 Eckart-Young-Mirsky for the Operator Norm
182(3)
§6.4 Eckart-Young-Mirsky for the Frobenius Norm and Image Compression
185(3)
§6.5 The Orthogonal Procrustes Problem
188(10)
§6.6 Summary
198(3)
Chapter 7 A Glimpse Towards Infinite Dimensions
201(8)
Bibliography 209(4)
Index of Notation 213(2)
Index 215
James Bisgard, Central Washington University, Ellensburg, WA