Atjaunināt sīkdatņu piekrišanu

E-grāmata: Analysis, Probability And Mathematical Physics On Fractals

Edited by (Texas A&m Univ, Usa), Editor-in-chief (Cornell Univ, Usa), Edited by (Colgate Univ, Usa), Edited by (Univ Of Connecticut, Usa), Edited by (Univ Of Connecticut, Usa)
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 123,98 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

In the 50 years since Mandelbrot identified the fractality of coastlines, mathematicians and physicists have developed a rich and beautiful theory describing the interplay between analytic, geometric and probabilistic aspects of the mathematics of fractals. Using classical and abstract analytic tools developed by Cantor, Hausdorff, and Sierpinski, they have sought to address fundamental questions: How can we measure the size of a fractal set? How do waves and heat travel on irregular structures? How are analysis, geometry and stochastic processes related in the absence of Euclidean smooth structure? What new physical phenomena arise in the fractal-like settings that are ubiquitous in nature? This book introduces background and recent progress on these problems, from both established leaders in the field and early career researchers. The book gives a broad introduction to several foundational techniques in fractal mathematics, while also introducing some specific new and significant results of interest to experts, such as that waves have infinite propagation speed on fractals. It contains sufficient introductory material that it can be read by new researchers or researchers from other areas who want to learn about fractal methods and results.

Preface v
1 A Capacity Approach to Box and Packing Dimensions of Projections and Other Images
1(20)
K. J. Falconer
2 Minkowski Measurability Criteria for Compact Sets and Relative Fractal Drums in Euclidean Spaces
21(78)
Michel L. Lapidus
Goran Radunovic
Darko Zubrinic
3 Orthonormal Coalescence Hidden-Variable Fractal Interpolation Functions
99(32)
G. P. Kapoor
Srijanani Anurag Prasad
4 Fractal Transformed Doubly Reflected Brownian Motions
131(32)
Tim Ehnes
Uta Freiberg
5 Harmonic Analysis of Fractal Measures: Basis and Frame Algorithms for Fractal L2-Spaces, and Boundary Representations as Closed Subspaces of the Hardy Space
163(60)
John E. Herr
Palle E. T. Jorgensen
Eric S. Weber
6 Spectral Pairs and Positive-Definite-Tempered Distributions
223(20)
Palle E. T. Jorgensen
Feng Tian
7 Asymptotic Behavior of Jacobi Matrices of IFS: A Long-Standing Conjecture
243(30)
Giorgio Mantica
8 Random Walks and Induced Dirichlet Forms on Compact Spaces of Homogeneous Type
273(24)
Shi-Lei Kong
Ka-Sing Lau
Ting-Kam Leonard Wong
9 Analysis on the Projective Octagasket
297(40)
Yiran Mao
Robert S. Strichartz
Levente Szabo
Wing Hong Wong
10 Measures Essentially of Finite Type and Spectral Asymptotics of Fractal Laplacians
337(26)
Sze-Man Ngai
11 Eigenvalue Approximation for Krein-Feller-Operators
363(22)
Uta Freiberg
Lenon Minorics
12 Spectral Asymptotics on the Hanoi Attractor
385(34)
Elias Hauser
13 Sobolev Spaces and Calculus of Variations on Fractals
419(32)
Michael Hinz
Dorina Koch
Melissa Meinert
14 Approximation of Magnetic Laplacians on the Sierpinski Gasket by Discrete Magnetic Laplacians
451(26)
Olaf Post
Jan Simmer
15 Magnetostatic Problems in Fractal Domains
477(26)
Simone Creo
Maria Rosaria Lancia
Paola Vernole
Michael Hinz
Alexander Teplyaev
16 Infinite Propagation Speed for Wave Solutions on Some Post-critically Finite Fractals
503(18)
Yin Tat Lee
17 The Damped Stochastic Wave Equation on Post-critically Finite Fractals
521(36)
Ben Hambly
Weiye Yang
18 Fractal AC Circuits and Propagating Waves on Fractals
557(12)
Eric Akkermans
Joe P. Chen
Gerald Dunne
Luke G. Rogers
Alexander Teplyaev
Index 569