Preface to the Seventh Edition |
|
xiii | |
Abbreviations and Notation |
|
xv | |
1 Introduction |
|
1 | (14) |
|
1.1 Some Representative Time Series |
|
|
1 | (7) |
|
|
8 | (1) |
|
1.3 Objectives of Time Series Analysis |
|
|
9 | (2) |
|
1.4 Approaches to Time Series Analysis |
|
|
11 | (1) |
|
1.5 Review of Books on Time Series |
|
|
12 | (3) |
2 Basic Descriptive Techniques |
|
15 | (26) |
|
|
15 | (2) |
|
2.2 Stationary Time Series |
|
|
17 | (1) |
|
|
17 | (1) |
|
|
18 | (1) |
|
2.5 Analysing Series that Contain a Trend and No Seasonal Variation |
|
|
19 | (6) |
|
|
20 | (1) |
|
|
21 | (4) |
|
|
25 | (1) |
|
|
25 | (1) |
|
2.6 Analysing Series that Contain a Trend and Seasonal Variation |
|
|
25 | (3) |
|
2.7 Autocorrelation and the Correlogram |
|
|
28 | (8) |
|
|
30 | (1) |
|
2.7.2 Interpreting the correlogram |
|
|
31 | (5) |
|
2.8 Other Tests of Randomness |
|
|
36 | (1) |
|
|
37 | (4) |
3 Some Linear Time Series Models |
|
41 | (36) |
|
3.1 Stochastic Processes and Their Properties |
|
|
41 | (1) |
|
|
42 | (2) |
|
3.3 Properties of the Autocorrelation Function |
|
|
44 | (1) |
|
3.4 Purely Random Processes |
|
|
45 | (2) |
|
|
47 | (1) |
|
3.6 Moving Average Processes |
|
|
47 | (5) |
|
3.6.1 Stationarity and autocorrelation function of an MA process |
|
|
48 | (1) |
|
3.6.2 Invertibility of an MA process |
|
|
49 | (3) |
|
3.7 Autoregressive Processes |
|
|
52 | (7) |
|
3.7.1 First-order process |
|
|
53 | (1) |
|
3.7.2 General-order process |
|
|
54 | (5) |
|
|
59 | (4) |
|
3.8.1 Stationarity and invertibility conditions |
|
|
60 | (1) |
|
3.8.2 Yule-Walker equations and autocorrelations |
|
|
60 | (2) |
|
3.8.3 AR and MA representations |
|
|
62 | (1) |
|
3.9 Integrated ARMA (or ARIMA) Models |
|
|
63 | (1) |
|
3.10 Fractional Differencing and Long-Memory Models |
|
|
64 | (5) |
|
3.11 The General Linear Process |
|
|
69 | (1) |
|
3.12 Continuous Processes |
|
|
69 | (1) |
|
3.13 The Wold Decomposition Theorem |
|
|
70 | (7) |
4 Fitting Time Series Models in the Time Domain |
|
77 | (38) |
|
4.1 Estimating Autocovariance and Autocorrelation Functions |
|
|
77 | (4) |
|
4.1.1 Using the correlogram in modelling |
|
|
80 | (1) |
|
4.1.2 Estimating the mean |
|
|
80 | (1) |
|
|
81 | (1) |
|
4.2 Fitting an Autoregressive Process |
|
|
81 | (7) |
|
4.2.1 Estimating parameters of an AR process |
|
|
82 | (2) |
|
4.2.2 Determining the order of an AR process |
|
|
84 | (4) |
|
4.3 Fitting a Moving Average Process |
|
|
88 | (6) |
|
4.3.1 Estimating parameters of an MA process |
|
|
88 | (2) |
|
4.3.2 Determining the order of an MA process |
|
|
90 | (4) |
|
4.4 Estimating Parameters of an ARMA Model |
|
|
94 | (3) |
|
4.5 Model Identification Tools |
|
|
97 | (2) |
|
4.6 Testing for Unit Roots |
|
|
99 | (3) |
|
4.7 Estimating Parameters of an ARIMA Model |
|
|
102 | (1) |
|
4.8 Box-Jenkins Seasonal ARIMA Models |
|
|
103 | (4) |
|
|
107 | (3) |
|
4.10 General Remarks on Model Building |
|
|
110 | (5) |
5 Forecasting |
|
115 | (34) |
|
|
115 | (2) |
|
5.2 Extrapolation and Exponential Smoothing |
|
|
117 | (6) |
|
5.2.1 Extrapolation of trend curves |
|
|
118 | (1) |
|
5.2.2 Simple exponential smoothing |
|
|
118 | (2) |
|
5.2.3 The Holt and Holt-Winters forecasting procedures |
|
|
120 | (3) |
|
5.3 The Box-Jenkins Methodology |
|
|
123 | (12) |
|
5.3.1 The Box-Jenkins procedures |
|
|
123 | (4) |
|
|
127 | (1) |
|
5.3.3 Prediction intervals |
|
|
128 | (7) |
|
5.4 Multivariate Procedures |
|
|
135 | (3) |
|
5.4.1 Multiple regression |
|
|
135 | (2) |
|
|
137 | (1) |
|
5.4.3 Other multivariate models |
|
|
138 | (1) |
|
5.5 Comparative Review of Forecasting Procedures |
|
|
138 | (7) |
|
5.5.1 Forecasting competitions |
|
|
139 | (2) |
|
5.5.2 Choosing a non-automatic method |
|
|
141 | (2) |
|
5.5.3 A strategy for non-automatic univariate forecasting |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
145 | (4) |
6 Stationary Processes in the Frequency Domain |
|
149 | (18) |
|
|
149 | (1) |
|
6.2 The Spectral Distribution Function |
|
|
149 | (5) |
|
6.3 The Spectral Density Function |
|
|
154 | (3) |
|
6.4 The Spectrum of a Continuous Process |
|
|
157 | (1) |
|
6.5 Derivation of Selected Spectra |
|
|
158 | (9) |
7 Spectral Analysis |
|
167 | (32) |
|
|
167 | (1) |
|
7.2 A Simple Sinusoidal Model |
|
|
168 | (4) |
|
|
172 | (5) |
|
7.3.1 The relationship between the periodogram and the autocovariance function |
|
|
175 | (1) |
|
7.3.2 Properties of the periodogram |
|
|
175 | (2) |
|
7.4 Some Consistent Estimation Procedures |
|
|
177 | (8) |
|
7.4.1 Transforming the truncated autocovariance function |
|
|
177 | (2) |
|
|
179 | (1) |
|
|
180 | (1) |
|
7.4.4 Smoothing the periodogram |
|
|
180 | (3) |
|
7.4.5 The fast Fourier transform (FFT) |
|
|
183 | (2) |
|
7.5 Confidence Intervals for the Spectrum |
|
|
185 | (1) |
|
7.6 Comparison of Different Estimation Procedures |
|
|
186 | (5) |
|
7.7 Analysing a Continuous Time Series |
|
|
191 | (2) |
|
7.8 Examples and Discussion |
|
|
193 | (6) |
8 Bivariate Processes |
|
199 | (18) |
|
8.1 Cross-Covariance and Cross-Correlation |
|
|
199 | (5) |
|
|
201 | (1) |
|
|
202 | (1) |
|
|
203 | (1) |
|
|
204 | (13) |
|
|
206 | (3) |
|
|
209 | (2) |
|
|
211 | (6) |
9 Linear Systems |
|
217 | (36) |
|
|
217 | (2) |
|
9.2 Linear Systems in the Time Domain |
|
|
219 | (4) |
|
9.2.1 Some types of linear systems |
|
|
219 | (2) |
|
9.2.2 The impulse response function: An explanation |
|
|
221 | (1) |
|
9.2.3 The step response function |
|
|
222 | (1) |
|
9.3 Linear Systems in the Frequency Domain |
|
|
223 | (15) |
|
9.3.1 The frequency response function |
|
|
223 | (4) |
|
9.3.2 Gain and phase diagrams |
|
|
227 | (2) |
|
|
229 | (2) |
|
9.3.4 General relation between input and output |
|
|
231 | (5) |
|
9.3.5 Linear systems in series |
|
|
236 | (1) |
|
|
237 | (1) |
|
9.4 Identification of Linear Systems |
|
|
238 | (15) |
|
9.4.1 Estimating the frequency response function |
|
|
240 | (3) |
|
9.4.2 The Box-Jenkins approach |
|
|
243 | (4) |
|
9.4.3 Systems involving feedback |
|
|
247 | (6) |
10 State-Space Models and the Kalman Filter |
|
253 | (14) |
|
|
253 | (8) |
|
10.1.1 The random walk plus noise model |
|
|
256 | (1) |
|
10.1.2 The linear growth model |
|
|
256 | (1) |
|
10.1.3 The basic structural model |
|
|
257 | (1) |
|
10.1.4 State-space representation of an AR(2) process |
|
|
258 | (1) |
|
10.1.5 Bayesian forecasting |
|
|
259 | (1) |
|
10.1.6 A regression model with time-varying coefficients |
|
|
260 | (1) |
|
|
260 | (1) |
|
|
261 | (6) |
11 Non-Linear Models |
|
267 | (36) |
|
|
267 | (6) |
|
11.1.1 Why non-linearity? |
|
|
267 | (3) |
|
11.1.2 What is a linear model? |
|
|
270 | (1) |
|
11.1.3 What is a non-linear model? |
|
|
271 | (1) |
|
11.1.4 What is white noise? |
|
|
272 | (1) |
|
11.2 Non-Linear Autoregressive Processes |
|
|
273 | (1) |
|
11.3 Threshold Autoregressive Models |
|
|
274 | (6) |
|
11.4 Smooth Transition Autoregressive Models |
|
|
280 | (4) |
|
|
284 | (1) |
|
11.6 Regime-Switching Models |
|
|
285 | (5) |
|
|
290 | (6) |
|
|
296 | (4) |
|
|
300 | (1) |
|
|
301 | (2) |
12 Volatility Models |
|
303 | (20) |
|
12.1 Structure of a Model for Asset Returns |
|
|
303 | (2) |
|
|
305 | (1) |
|
12.3 Autoregressive Conditional Heteroskedastic (ARCH) Models |
|
|
306 | (5) |
|
12.4 Generalized ARCH Models |
|
|
311 | (4) |
|
12.5 The ARMA-GARCH Models |
|
|
315 | (3) |
|
12.6 Other ARCH-Type Models |
|
|
318 | (2) |
|
12.6.1 The integrated GARCH model |
|
|
319 | (1) |
|
12.6.2 The exponential GARCH model |
|
|
320 | (1) |
|
12.7 Stochastic Volatility Models |
|
|
320 | (1) |
|
|
321 | (2) |
13 Multivariate Time Series Modelling |
|
323 | (28) |
|
|
323 | (7) |
|
13.1.1 One equation or many? |
|
|
324 | (2) |
|
13.1.2 The cross-correlation function |
|
|
326 | (1) |
|
13.1.3 Initial data analysis |
|
|
327 | (3) |
|
13.2 Single Equation Models |
|
|
330 | (1) |
|
13.3 Vector Autoregressive Models |
|
|
331 | (3) |
|
|
331 | (1) |
|
|
332 | (2) |
|
|
334 | (1) |
|
13.5 Fitting VAR and VARMA Models |
|
|
335 | (9) |
|
|
344 | (1) |
|
13.7 Multivariate Volatility Models |
|
|
345 | (3) |
|
13.7.1 Exponentially weighted estimate |
|
|
345 | (1) |
|
|
346 | (2) |
|
|
348 | (3) |
14 Some More Advanced Topics |
|
351 | (14) |
|
14.1 Modelling Non-Stationary Time Series |
|
|
351 | (2) |
|
|
353 | (2) |
|
|
355 | (1) |
|
|
356 | (9) |
|
14.4.1 Autoregressive spectrum estimation |
|
|
357 | (1) |
|
|
357 | (1) |
|
14.4.3 'Crossing' problems |
|
|
358 | (1) |
|
14.4.4 Observations at unequal intervals, including missing values |
|
|
358 | (1) |
|
14.4.5 Outliers and robust methods |
|
|
359 | (2) |
|
14.4.6 Repeated measurements |
|
|
361 | (1) |
|
14.4.7 Aggregation of time series |
|
|
361 | (1) |
|
14.4.8 Spatial and spatio-temporal series |
|
|
362 | (1) |
|
14.4.9 Time series in finance |
|
|
362 | (2) |
|
14.4.10 Discrete-valued time series |
|
|
364 | (1) |
Appendix A Fourier, Laplace, and z-Transforms |
|
365 | (4) |
Appendix B Dirac Delta Function |
|
369 | (2) |
Appendix C Covariance and Correlation |
|
371 | (2) |
Answers to Exercises |
|
373 | (8) |
References |
|
381 | (14) |
Index |
|
395 | |