Preface |
|
xi | |
|
|
1 | (41) |
|
1.1 Principles of Newtonian Mechanics |
|
|
1 | (6) |
|
|
7 | (4) |
|
1.3 Virtual Displacements and d'Alembert's Principle |
|
|
11 | (6) |
|
1.4 Generalised Coordinates and Lagrange's Equations |
|
|
17 | (7) |
|
1.5 Applications of Lagrange's Equations |
|
|
24 | (4) |
|
1.6 Generalised Potentials and Dissipation Function |
|
|
28 | (3) |
|
1.7 Central Forces and Bertrand's Theorem |
|
|
31 | (11) |
|
|
37 | (5) |
|
2 Hamilton's Variational Principle |
|
|
42 | (44) |
|
2.1 Rudiments of the Calculus of Variations |
|
|
42 | (7) |
|
|
49 | (1) |
|
2.3 Hamilton's Principle and Lagrange's Equations |
|
|
50 | (6) |
|
2.4 Hamilton's Principle in the Non-Holonomic Case |
|
|
56 | (9) |
|
2.5 Symmetry Properties and Conservation Laws |
|
|
65 | (6) |
|
2.6 Conservation of Energy |
|
|
71 | (2) |
|
|
73 | (13) |
|
|
78 | (8) |
|
3 Kinematics of Rotational Motion |
|
|
86 | (26) |
|
3.1 Orthogonal Transformations |
|
|
86 | (6) |
|
3.2 Possible Displacements of a Rigid Body |
|
|
92 | (3) |
|
|
95 | (1) |
|
3.4 Infinitesimal Rotations and Angular Velocity |
|
|
96 | (6) |
|
3.5 Rotation Group and Infinitesimal Generators |
|
|
102 | (1) |
|
3.6 Dynamics in Non-Inertial Reference Frames |
|
|
103 | (9) |
|
|
109 | (3) |
|
4 Dynamics of Rigid Bodies |
|
|
112 | (37) |
|
4.1 Angular Momentum and Inertia Tensor |
|
|
112 | (2) |
|
4.2 Mathematical Interlude: Tensors and Dyadics |
|
|
114 | (5) |
|
4.3 Moments and Products of Inertia |
|
|
119 | (1) |
|
4.4 Kinetic Energy and Parallel Axis Theorem |
|
|
120 | (2) |
|
4.5 Diagonalisation of the Inertia Tensor |
|
|
122 | (4) |
|
4.6 Symmetries and Principal Axes of Inertia |
|
|
126 | (3) |
|
|
129 | (2) |
|
4.8 Euler's Equations and Free Rotation |
|
|
131 | (8) |
|
4.9 Symmetric Top with One Point Fixed |
|
|
139 | (10) |
|
|
145 | (4) |
|
|
149 | (34) |
|
|
149 | (5) |
|
5.2 Anomalous Case: Quartic Oscillator |
|
|
154 | (7) |
|
5.3 Stationary Motion and Small Oscillations |
|
|
161 | (2) |
|
5.4 Small Oscillations: General Case |
|
|
163 | (2) |
|
5.5 Normal Modes of Vibration |
|
|
165 | (5) |
|
|
170 | (6) |
|
5.7 Mathematical Supplement |
|
|
176 | (7) |
|
|
178 | (5) |
|
|
183 | (32) |
|
6.1 Lorentz Transformations |
|
|
183 | (5) |
|
6.2 Light Cone and Causality |
|
|
188 | (3) |
|
|
191 | (3) |
|
|
194 | (2) |
|
6.5 Physical Laws in Covariant Form |
|
|
196 | (3) |
|
6.6 Relativistic Dynamics |
|
|
199 | (5) |
|
6.7 Relativistic Collisions |
|
|
204 | (3) |
|
6.8 Relativistic Dynamics in Lagrangian Form |
|
|
207 | (2) |
|
6.9 Action at a Distance in Special Relativity |
|
|
209 | (6) |
|
|
211 | (4) |
|
|
215 | (27) |
|
7.1 Hamilton's Canonical Equations |
|
|
215 | (5) |
|
7.2 Symmetries and Conservation Laws |
|
|
220 | (1) |
|
|
221 | (3) |
|
7.4 Relativistic Hamiltonian Formulation |
|
|
224 | (2) |
|
7.5 Hamilton's Equations in Variational Form |
|
|
226 | (2) |
|
7.6 Time as a Canonical Variable |
|
|
228 | (6) |
|
7.7 The Principle of Maupertuis |
|
|
234 | (8) |
|
|
237 | (5) |
|
8 Canonical Transformations |
|
|
242 | (46) |
|
8.1 Canonical Transformations and Generating Functions |
|
|
242 | (6) |
|
8.2 Canonicity and Lagrange Brackets |
|
|
248 | (2) |
|
|
250 | (4) |
|
|
254 | (4) |
|
8.5 Infinitesimal Canonical Transformations |
|
|
258 | (4) |
|
8.6 Angular Momentum Poisson Brackets |
|
|
262 | (2) |
|
8.7 Lie Series and Finite Canonical Transformations |
|
|
264 | (4) |
|
8.8 Theorems of Liouville and Poincare |
|
|
268 | (4) |
|
8.9 Constrained Hamiltonian Systems |
|
|
272 | (16) |
|
|
281 | (7) |
|
9 The Hamilton-Jacobi Theory |
|
|
288 | (50) |
|
9.1 The Hamilton-Jacobi Equation |
|
|
288 | (3) |
|
9.2 One-Dimensional Examples |
|
|
291 | (3) |
|
9.3 Separation of Variables |
|
|
294 | (5) |
|
9.4 Incompleteness of the Theory: Point Charge in Dipole Field |
|
|
299 | (4) |
|
9.5 Action as a Function of the Coordinates |
|
|
303 | (3) |
|
9.6 Action-Angle Variables |
|
|
306 | (6) |
|
9.7 Integrable Systems: The Liouville-Arnold Theorem |
|
|
312 | (4) |
|
9.8 Non-integrability Criteria |
|
|
316 | (2) |
|
9.9 Integrability, Chaos, Determinism and Ergodicity |
|
|
318 | (2) |
|
9.10 Prelude to the KAM Theorem |
|
|
320 | (3) |
|
9.11 Action Variables in the Kepler Problem |
|
|
323 | (2) |
|
9.12 Adiabatic Invariants |
|
|
325 | (4) |
|
9.13 Hamilton-Jacobi Theory and Quantum Mechanics |
|
|
329 | (9) |
|
|
332 | (6) |
|
10 Hamiltonian Perturbation Theory |
|
|
338 | (22) |
|
10.1 Statement of the Problem |
|
|
338 | (3) |
|
10.2 Generating Function Method |
|
|
341 | (1) |
|
10.3 One Degree of Freedom |
|
|
342 | (3) |
|
10.4 Several Degrees of Freedom |
|
|
345 | (3) |
|
10.5 The Kolmogorov-Arnold-Moser Theory |
|
|
348 | (5) |
|
10.6 Stability: Eternal or Long Term |
|
|
353 | (1) |
|
|
354 | (6) |
|
|
358 | (2) |
|
11 Classical Field Theory |
|
|
360 | (32) |
|
11.1 Lagrangian Field Theory |
|
|
360 | (5) |
|
11.2 Relativistic Field Theories |
|
|
365 | (2) |
|
11.3 Functional Derivatives |
|
|
367 | (4) |
|
11.4 Hamiltonian Field Theory |
|
|
371 | (3) |
|
11.5 Symmetries of the Action and Noether's Theorem |
|
|
374 | (4) |
|
11.6 Solitary Waves and Solitons |
|
|
378 | (3) |
|
|
381 | (11) |
|
|
385 | (7) |
Appendix A Indicial Notation |
|
392 | (6) |
Appendix B Frobenius Integrability Condition |
|
398 | (8) |
Appendix C Homogeneous Functions and Euler's Theorem |
|
406 | (2) |
Appendix D Vector Spaces and Linear Operators |
|
408 | (13) |
Appendix E Stability of Dynamical Systems |
|
421 | (5) |
Appendix F Exact Differentials |
|
426 | (2) |
Appendix G Geometric Phases |
|
428 | (5) |
Appendix H Poisson Manifolds |
|
433 | (7) |
Appendix I Decay Rate of Fourier Coefficients |
|
440 | (2) |
References |
|
442 | (10) |
Index |
|
452 | |