Atjaunināt sīkdatņu piekrišanu

E-grāmata: Analytical Modeling of Solute Transport in Groundwater: Using Models to Understand the Effect of Natural Processes on Contaminant Fate and Transport

  • Formāts: EPUB+DRM
  • Izdošanas datums: 08-Feb-2017
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119300274
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 103,44 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 08-Feb-2017
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119300274
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Teaches, using simple analytical models how physical, chemical, and biological processes in the subsurface affect contaminant transport







Uses simple analytical models to demonstrate the impact of subsurface processes on the fate and transport of groundwater contaminants Includes downloadable modeling tool that provides easily understood graphical output for over thirty models Modeling tool and book are integrated to facilitate reader understanding Collects analytical solutions from many sources into a single volume and, for the interested reader, shows how these solutions are derived from the governing model equations
List of Symbols xi
Preface xv
Acknowledgments xvii
About the Companion Website xix
1 Modeling 1(18)
1.1 Introduction
1(2)
1.2 Definitions
3(1)
1.3 A Simple Model - Darcy's Law and Flow Modeling
3(13)
1.3.1 Darcy's Law
3(2)
1.3.2 Flow Equation
5(3)
1.3.3 Example Application of Darcy's Law and the Flow Equation
8(1)
1.3.4 Note of Caution - Know Model Assumptions and Applicable Conditions
9(4)
1.3.5 Superposition (For a Fuller Discussion of Superposition Applied to Groundwater Flow, See Reilly et al., 1984)
13(1)
1.3.6 Example Application of the Principle of Superposition
13(3)
References
16(3)
2 Contaminant Transport Modeling 19(18)
2.1 Introduction
19(1)
2.2 Fate and Transport Processes
19(6)
2.2.1 Advection
19(1)
2.2.2 Dispersion
20(2)
2.2.3 Sorption
22(2)
2.2.4 Chemical and Biological Reactions
24(1)
2.3 Advective-Dispersive-Reactive (ADR) Transport Equation
25(4)
2.3.1 Reaction Submodel
27(1)
2.3.2 Sorption Submodel
28(1)
2.3.2.1 Linear Equilibrium
28(1)
2.3.2.2 Rate-Limited Sorption
28(1)
2.4 Model Initial and Boundary Conditions
29(3)
2.4.1 Initial Conditions
30(1)
2.4.2 Boundary Conditions
31(1)
2.5 Nondimensionalization
32(3)
References
35(2)
3 Analytical Solutions to 1-D Equations 37(34)
3.1 Solving the ADR Equation with Initial/Boundary Conditions
37(1)
3.2 Using Superposition to Derive Additional Solutions
38(2)
3.3 Solutions
40(1)
3.3.1 AnaModelTool Software
40(1)
3.3.2 Virtual Experimental System
41(1)
3.4 Effect of Advection
41(2)
3.5 Effect of Dispersion
43(5)
3.6 Effect of Sorption
48(12)
3.6.1 Linear, Equilibrium Sorption
48(3)
3.6.2 Rate-Limited Sorption
51(13)
3.6.2.1 First-Order Kinetics
51(6)
3.6.2.2 Diffusion-Limited
57(3)
3.7 Effect of First-Order Degradation
60(4)
3.8 Effect of Boundary Conditions
64(4)
3.8.1 Effect of Boundary Conditions on Breakthrough Curves
64(2)
3.8.2 Volume-Averaged Resident Concentration Versus Flux-Averaged Concentration
66(2)
References
68(3)
4 Analytical Solutions to 3-D Equations 71(16)
4.1 Solving the ADR Equation with Initial/Boundary Conditions
71(1)
4.2 Using Superposition to Derive Additional Solutions
72(1)
4.3 Virtual Experimental System
72(1)
4.4 Effect of Dispersion
73(5)
4.5 Effect of Sorption
78(5)
4.5.1 Linear, Equilibrium Sorption
78(2)
4.5.2 Rate-Limited Sorption
80(3)
4.6 Effect of First-Order Degradation
83(4)
5 Method of Moments 87(34)
5.1 Temporal Moments
87(15)
5.1.1 Definition
87(1)
5.1.2 Evaluating Temporal Moments
88(1)
5.1.3 Temporal Moment Behavior
88(14)
5.1.3.1 Advective-Dispersive Transport with First-Order Degradation and Linear Equilibrium Sorption
88(9)
5.1.3.2 Advective-Dispersive Transport with First-Order Degradation and Rate-Limited Sorption
97(5)
5.2 Spatial Moments
102(18)
5.2.1 Definition
102(1)
5.2.2 Evaluating Spatial Moments
103(1)
5.2.3 Spatial Moment Behavior
104(16)
5.2.3.1 Advective-Dispersive Transport with First-Order Degradation and Linear Equilibrium Sorption
104(1)
5.2.3.2 Advective-Dispersive Transport with First-Order Degradation and Rate-Limited Sorption
105(15)
References
120(1)
6 Application of Analytical Models to Gain Insight into Transport Behavior 121(8)
6.1 Contaminant Remediation
121(3)
6.2 Borden Field Experiment
124(3)
References
127(2)
A Solution to One-Dimensional ADR Equation with First-Order Degradation Kinetics Using Laplace Transforms 129(4)
Reference
132(1)
B Solution to One-Dimensional ADR Equation with Zeroth-Order Degradation Kinetics Using Laplace Transforms 133(4)
Reference
135(2)
C Solutions to the One-Dimensional ADR in Literature 137(4)
References
140(1)
D User Instructions for AnaModelTool Software 141(4)
E Useful Laplace Transforms 145(6)
E.1 Laplace Transforms from van Genuchten and Alves (1982)
145(3)
Reference
148(3)
F Solution to Three-Dimensional ADR Equation with
First-Order Degradation Kinetics for an Instantaneous Point
Source Using Laplace and Fourier Transforms 149 References
151(2)
G Solution to Three-Dimensional ADR Equation with Zeroth-Order Degradation Kinetics for an Instantaneous Point Source Using Laplace and Fourier Transforms 153(4)
References
155(2)
H Solutions to the Three-Dimensional ADR in Literature 157(4)
References
160(1)
I Derivation of the Long-Time First-Order Rate Constant to Model Decrease in Concentrations at a Monitoring Well Due to Advection, Dispersion, Equilibrium Sorption, and First-Order Degradation (Three-Dimensional Infinite System with an Instantaneous Point Source) 161(2)
J Application of Aris' Method of Moments to Calculate Temporal Moments 163(2)
K Application of Modified Aris' Method of Moments to Calculate Spatial Moments Assuming Equilibrium Sorption 165(2)
L Application of Modified Aris' Method of Moments to Calculate Spatial Moments Assuming Rate-Limited Sorption 167(4)
L.1 Zeroth Spatial Moment
168(1)
L.2 First Spatial Moment
168(1)
L.3 Second Spatial Moment
168(3)
M Derivation of Laplace Domain Solutions to a Model Describing Radial Advective/Dispersive/Sorptive Transport to an Extraction Well 171(4)
References
173(2)
N AnaModelTool Governing Equations, Initial and Boundary Conditions, and Source Code 175(60)
N.1 Model 101
175(1)
N.2 Model 102
176(2)
N.3 Model 103
178(1)
N.4 Model 104
179(1)
N.5 Model 104M
180(2)
N.6 Model 105
182(2)
N.7 Model 106
184(1)
N.8 Model 107
185(2)
N.9 Model 108
187(2)
N.10 Model 109
189(2)
N.11 Model 201
191(2)
N.12 Model 202
193(2)
N.13 Model 203
195(2)
N.14 Model 204
197(3)
N.15 Model 205
200(1)
N.16 Model 206
201(2)
N.17 Model 207
203(3)
N.18 Model 208
206(1)
N.19 Model 301
207(3)
N.20 Model 302
210(2)
N.21 Model 303
212(3)
N.22 Model 304
215(2)
N.23 Model 305
217(3)
N.24 Model 306
220(2)
N.25 Model 401
222(1)
N.26 Model 402
223(2)
N.27 Model 403
225(2)
N.28 Model 404
227(2)
N.29 Model 405
229(3)
N.30 Model 406
232(3)
Index 235
Mark Goltz is a well-known authority in the field of hydrogeology and subsurface contaminant transport and remediation. He is Distinguished Professor Emeritus of Engineering and Environmental Management at the Air Force Institute of Technology, where he conducted research into the fate and transport of groundwater contaminants and contaminated groundwater remediation technologies. He has published numerous works in these areas.

Junqi Huang is a hydrologist in the Ground Water and Ecosystems Restoration Division, National Risk Management Research Laboratory, US EPA. He is an experienced hydrogeological modeler, with expertise developing models for groundwater flow and transport, groundwater management, and contaminated groundwater remediation strategies.