Atjaunināt sīkdatņu piekrišanu

E-grāmata: Analytical Routes to Chaos in Nonlinear Engineering

  • Formāts: PDF+DRM
  • Izdošanas datums: 21-Apr-2014
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781118883914
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 129,61 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Izdošanas datums: 21-Apr-2014
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781118883914
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Using a recently developed analytical methods, Luo presents analytical routes to chaos in a few typical engineering nonlinear dynamical systems. After a literature survey of analytical methods in nonlinear dynamical systems, he covers the analytical bifurcation trees of period-m motion to chaos for Duffing oscillator, the period-m motion in the periodically forced van del Pol oscillator, the analytical bifurcation trees of period motions to chaos in the van del Pol-Duffing oscillator, the analytical solutions of period-m motions in parametric nonlinear oscillators, and the bifurcation tree of periodic motions to chaos in a nonlinear Jeffcott rotor dynamic system. Annotation ©2014 Ringgold, Inc., Portland, OR (protoview.com)

Nonlinear problems are of interest to engineers, physicists and mathematicians and many other scientists because most systems are inherently nonlinear in nature. As nonlinear equations are difficult to solve, nonlinear systems are commonly approximated by linear equations. This works well up to some accuracy and some range for the input values, but some interesting phenomena such as chaos and singularities are hidden by linearization and perturbation analysis. It follows that some aspects of the behavior of a nonlinear system appear commonly to be chaotic, unpredictable or counterintuitive. Although such a chaotic behavior may resemble a random behavior, it is absolutely deterministic.

Analytical Routes to Chaos in Nonlinear Engineering discusses analytical solutions of periodic motions to chaos or quasi-periodic motions in nonlinear dynamical systems in engineering and considers engineering applications, design, and control. It systematically discusses complex nonlinear phenomena in engineering nonlinear systems, including the periodically forced Duffing oscillator, nonlinear self-excited systems, nonlinear parametric systems and nonlinear rotor systems. Nonlinear models used in engineering are also presented and a brief history of the topic is provided.

Key features:

  • Considers engineering applications, design and control
  • Presents analytical techniques to show how to find the periodic motions to chaos in nonlinear dynamical systems
  • Systematically discusses complex nonlinear phenomena in engineering nonlinear systems
  • Presents extensively used nonlinear models in engineering

Analytical Routes to Chaos in Nonlinear Engineering is a practical reference for researchers and practitioners across engineering, mathematics and physics disciplines, and is also a useful source of information for graduate and senior undergraduate students in these areas.

Preface ix
1 Introduction 1(24)
1.1 Analytical Methods
1(23)
1.1.1 Lagrange Standard Form
1(1)
1.1.2 Perturbation Methods
2(3)
1.1.3 Method of Averaging
5(3)
1.1.4 Generalized Harmonic Balance
8(16)
1.2 Book Layout
24(1)
2 Bifurcation Trees in Duffing Oscillators 25(62)
2.1 Analytical Solutions
25(7)
2.2 Period-1 Motions to Chaos
32(25)
2.2.1 Period-1 Motions
33(2)
2.2.2 Period-1 to Period-4 Motions
35(17)
2.2.3 Numerical Simulations
52(5)
2.3 Period-3 Motions to Chaos
57(30)
2.3.1 Independent, Symmetric Period-3 Motions
57(7)
2.3.2 Asymmetric Period-3 Motions
64(7)
2.3.3 Period-3 to Period-6 Motions
71(11)
2.3.4 Numerical Illustrations
82(5)
3 Self-Excited Nonlinear Oscillators 87(64)
3.1 van del Pol Oscillators
87(27)
3.1.1 Analytical Solutions
87(10)
3.1.2 Frequency-Amplitude Characteristics
97(13)
3.1.3 Numerical Illustrations
110(4)
3.2 van del Pol-Duffing Oscillators
114(37)
3.2.1 Finite Fourier Series Solutions
114(16)
3.2.2 Analytical Predictions
130(13)
3.2.3 Numerical Illustrations
143(8)
4 Parametric Nonlinear Oscillators 151(58)
4.1 Parametric, Quadratic Nonlinear Oscillators
151(35)
4.1.1 Analytical Solutions
151(5)
4.1.2 Analytical Routes to Chaos
156(13)
4.1.3 Numerical Simulations
169(17)
4.2 Parametric Duffing Oscillators
186(23)
4.2.1 Formulations
186(8)
4.2.2 Parametric Hardening Duffing Oscillators
194(15)
5 Nonlinear Jeffcott Rotor Systems 209(52)
5.1 Analytical Periodic Motions
209(16)
5.2 Frequency-Amplitude Characteristics
225(21)
5.2.1 Period-1 Motions
226(5)
5.2.2 Analytical Bifurcation Trees
231(8)
5.2.3 Independent Period-5 Motion
239(7)
5.3 Numerical Simulations
246(15)
References 261(4)
Index 265
Professor Luo is currently a Distinguished Research Professor at Southern Illinois University Edwardsville. He is an international renowned figure in the area of nonlinear dynamics and mechanics. For about 30 years, Dr. Luos contributions on nonlinear dynamical systems and mechanics lie in (i) the local singularity theory for discontinuous dynamical systems, (ii) Dynamical systems synchronization, (iii) Analytical solutions of periodic and chaotic motions in nonlinear dynamical systems, (iv) The theory for stochastic and resonant layer in nonlinear Hamiltonian systems, (v) The full nonlinear theory for a deformable body. Such contributions have been scattered into 13 monographs and over 200 peer-reviewed journal and conference papers. His new research results are changing the traditional thinking in nonlinear physics and mathematics. Dr. Luo has served as an editor for the Journal Communications in Nonlinear Science and Numerical simulation, book series on Nonlinear Physical Science (HEP) and Nonlinear Systems and Complexity (Springer). Dr. Luo is the editorial member for two journals (i.e., IMeCh E Part K Journal of Multibody Dynamics and Journal of Vibration and Control). He also organized over 30 international symposiums and conferences on Dynamics and Control.