Atjaunināt sīkdatņu piekrišanu

Analytics, Policy, and Governance [Mīkstie vāki]

  • Formāts: Paperback / softback, 272 pages, height x width x depth: 254x178x16 mm, weight: 499 g, 33 b-w illus.
  • Izdošanas datums: 07-Feb-2017
  • Izdevniecība: Yale University Press
  • ISBN-10: 0300208391
  • ISBN-13: 9780300208399
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 32,69 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 38,46 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 272 pages, height x width x depth: 254x178x16 mm, weight: 499 g, 33 b-w illus.
  • Izdošanas datums: 07-Feb-2017
  • Izdevniecība: Yale University Press
  • ISBN-10: 0300208391
  • ISBN-13: 9780300208399
Citas grāmatas par šo tēmu:
The first available textbook on the rapidly growing and increasingly important field of government analytics


This first textbook on the increasingly important field of government analytics provides invaluable knowledge and training for students of government in the synthesis, interpretation, and communication of “big data,” which is now an integral part of governance and policy making. Integrating all the major components of this rapidly growing field, this invaluable text explores the intricate relationship of data analytics to governance while providing innovative strategies for the retrieval and management of information.

Recenzijas

This book is well written and an essential aid for work in this realm, and gives advanced students many tools with which to design projects and draw conclusions from them.Choice * Choice *

Introduction 1(14)
Jennifer Bachner
PART I ENGAGING THE DATA
1 Measuring Political and Policy Preferences Using Item Response Scaling
15(25)
Joshua D. Clinton
2 Causal Inference with Observational Data
40(27)
Justin Esarey
3 Causal Inference with Experimental Data
67(24)
David W. Nickerson
PART II EMERGING DATA SOURCES AND TECHNIQUES
4 Descriptive Network Analysis: Interest Group Lobbying Dynamics Around Immigration Policy
91(27)
Alexander Furnas
Lee Drutman
5 Learning from Place in the Era of Geolocation
118(19)
Ryan T. Moore
Andrew Reeves
6 Text Analysis: Estimating Policy Preferences from Written and Spoken Words
137(23)
Kenneth Benoit
Alexander Herzog
7 Machine Learning and Governance
160(25)
Alex C. Engler
PART III IMPLICATIONS FOR GOVERNANCE
8 Governing a Data-Driven Society
185(19)
Kothryn Wagner Hill
9 Big Data and Privacy
204(22)
Priscilla M. Regan
10 Reflections on Analytics: Knowledge and Power
226(19)
Benjamin Ginsberg
List of Contributors 245(4)
Index 249
Jennifer Bachner is director of the Master of Science in Government Analytics at Johns Hopkins. Benjamin Ginsberg is David Bernstein Professor of Political Science and chair of Governmental Studies at Johns Hopkins. Kathryn Wagner Hill is director of the Center for Advanced Governmental Studies at Johns Hopkins.