Atjaunināt sīkdatņu piekrišanu

E-grāmata: Analyzing Video Sequences of Multiple Humans: Tracking, Posture Estimation and Behavior Recognition

  • Formāts - PDF+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Analyzing Video Sequences of Multiple Humans: Tracking, Posture Estimation and Behavior Recognition describes some computer vision-based methods that analyze video sequences of humans. More specifically, methods for tracking multiple humans in a scene, estimating postures of a human body in 3D in real-time, and recognizing a person's behavior (gestures or activities) are discussed. For the tracking algorithm, the authors developed a non-synchronous method that tracks multiple persons by exploiting a Kalman filter that is applied to multiple video sequences. For estimating postures, an algorithm is presented that locates the significant points which determine postures of a human body, in 3D in real-time. Human activities are recognized from a video sequence by the HMM (Hidden Markov Models)-based method that the authors pioneered. The effectiveness of the three methods is shown by experimental results.

Papildus informācija

Springer Book Archives
List of Figures. List of Tables. Preface. Contributing Authors. 1: Introduction; J. Ohya. 2: Tracking multiple persons from multiple camera images; A. Utsumi. 2.1. Overview. 2.2. Preparation. 2.3. Features of Multiple camera based tracking systems. 2.4. Algorithms for multiple-camera human tracking system. 2.5. Implementation. 2.6. Experiments. 2.7. Discussion and Conclusions 3: Posture estimation; J. Ohya. 3.1. Introduction. 3.2. A heuristic for estimating postures in 2D. 3.3. A heuristic method for estimating postures in 3D. 3.4. A non-heuristic method for estimating postures in 3D. 3.5. Applications to virtual environments. 3.6. Discussions and conclusions. 4: Recognizing human behavior using Hidden Markov Models; J. Yamato. 4.1. Background and overview. 4.2. Hidden Markov models. 4.3. Applying HMM to time-sequential images. 4.4. Experiments. 4.5. Category-separated vector quantization. 4.6. Applying image database search. 4.7. Discussions and conclusion. 5: Conclusion and Future Work; J. Ohya. Index.