Atjaunināt sīkdatņu piekrišanu

E-grāmata: Animal Models and Human Reproduction

Edited by (Department of Veterinary Biomedical Scienecs, University of Missouri, Columbia), Edited by
  • Formāts: EPUB+DRM
  • Izdošanas datums: 13-Jan-2017
  • Izdevniecība: Wiley-Blackwell
  • Valoda: eng
  • ISBN-13: 9781118881347
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 206,95 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 13-Jan-2017
  • Izdevniecība: Wiley-Blackwell
  • Valoda: eng
  • ISBN-13: 9781118881347
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Reproductive biology of animal models includes biological aspects of reproduction in domestic and laboratory animal models as well as non-human primates and non-mammalian species with reference to humans which is of interest to a large group of investigators, students, clinicians, and numerous others including established investigators or newcomers to the field. The book will include the most commonly used animal models such as mouse, rat, pig, sheep, bovine, cat, dog, horse, non-human primates, and the zebrafish, amphibian, Drosophila, C elegans, and sea urchin models. These animals are either used for basic research on reproduction or as models for humans. Some, such as the sea urchin and mice, have been used as classic models for several decades to study cellular and molecular processes that are not easily performed in mammalian systems. We will include full chapters on non-human primates with reference to human reproduction that has become of significant interest, asin vitro fertilization (IVF) is being applied increasingly, and as reproductive disorders are becoming more and more recognized as causes for infertility that may be overcome through specific assisted reproductive technologies. Differences exist in the reproductive systems of different animal species that will be addressed in the different chapters.  Cross-species information is important to further advance the field and addressin vitro fertilization for dogs and horses that still face more difficulties than other animal species and are of interest to reproductive scientists.

List of Contributors xv
1 Anatomy of the Reproductive System 1(58)
Gheorghe M. Constantinescu
1.1 Male Genital Organs in Domestic Mammals
1(4)
1.1.1 The Testicle
1(1)
1.1.2 The Epididymis, Ductus Deferens, and Spermatic Cord
2(1)
1.1.3 The Descent of the Testicle
3(1)
1.1.4 The Tunics of the Spermatic Cord and the Testicle
4(1)
1.1.5 The Accessory Genital Glands
4(1)
1.1.6 The Penis and the Prepuce
4(1)
1.2 Female Genital Organs in Domestic Mammals
5(4)
1.2.1 The Ovary
5(2)
1.2.2 The Uterine Tube: Salpinx, Fallopian Tube
7(1)
1.2.3 The Uterus
7(1)
1.2.4 The Vagina and the Vestibule
8(1)
1.2.5 The Vulva and the Clitoris
8(1)
1.2.6 The Mammary Gland
9(1)
1.3 The Genital System in Domestic Mammals Species by Species
9(26)
1.3.1 The Genital System in the Carnivores: Cat and Dog
9(6)
1.3.2 The Genital System in the Pig
15(5)
1.3.3 The Genital System in the Ruminants
20(10)
1.3.4 The Genital System in the Horse
30(5)
1.4 Genital Organs in Laboratory Mammals
35(21)
1.4.1 The Genital System in the Rabbit
38(4)
1.4.2 The Genital System in the Mouse
42(5)
1.4.3 The Genital System in the Rat
47(3)
1.4.4 The Mammary Glands in Laboratory Animals
50(1)
1.4.5 The Genital System in the Xenopus laevis: African Clawed Frog
51(5)
1.4.6 The Genital System in the Brachidanio rerio (Zebrafish)
56(1)
References
56(3)
2 Anatomy of Mammalian (Endocrine) Glands Controlling the Reproduction 59(6)
Gheorghe M. Constantinescu
2.1 The Hypothalamus Including the Hypophysis
59(2)
2.2 The Cerebral Epiphysis
61(1)
2.3 The Thyroid Gland
61(1)
2.4 The Adrenal Glands
62(1)
2.5 The Sexual Glands
63(1)
2.6 The Liver
63(1)
References
63(2)
3 Models for Investigating Placental Biology 65(26)
Laramie Pence
Bhanu P. Telugu
3.1 Introduction
65(1)
3.2 Classification of Placenta
66(3)
3.3 Development of Human Placenta
69(4)
3.3.1 Trophoblast Subtypes and Development of Functional Placenta
69(2)
3.3.2 Placental Development
71(1)
3.3.3 Development of Fetal Membranes
71(2)
3.4 Modeling Placental Development and Diseases of Placental Origin
73(9)
3.4.1 In Vitro Cell Models
73(3)
3.4.2 Animal Models
76(3)
3.4.3 Alternative Animal Models
79(3)
3.5 Summary
82(1)
References
82(9)
4 Early Developmental Programming of the Ovarian Reserve, Ovarian Function, and Fertility 91(18)
Francesca Mossa
Siobhan W. Walsh
Alex C.O. Evans
Fermin Jimenez-Krassel
James J. Ireland
4.1 Introduction
91(1)
4.2 Impact of Prenatal Environmental Challenges on Fetal Oogonia (Germ Cells)
92(2)
4.2.1 Farm Animal Models
92(2)
4.3 Impact of Prenatal Environmental Challenges on Fetal Follicle/Oocyte Numbers (Healthy versus Atretic) and Oocyte Quality
94(1)
4.3.1 Farm Animal Models
94(1)
4.3.2 Humans/Primates
94(1)
4.4 Impact of Prenatal Environmental Challenges on the Ovarian Reserve (Total Number of Morphologically Healthy Follicles/Oocytes in Ovaries) in Offspring
95(3)
4.4.1 Farm Animal Models
95(2)
4.4.2 Rodent Models
97(1)
4.4.3 Humans/Primates
97(1)
4.5 Impact of Prenatal Environmental Challenges on Ovarian Function (e.g., Pituitary Gonadotropin Secretion, Ovarian Hormone/Growth Factor Production, Response to Gonadotropins, Follicle Development, Irregular Reproductive Cycles, and Ovulation Rate) in Offspring
98(2)
4.5.1 Farm Animal Models
98(1)
4.5.2 Rodent Models
99(1)
4.5.3 Humans/Primates
99(1)
4.6 Impact of Prenatal Environmental Challenges on Fertility (as Measured by Conception Rates, Fecundity, or Age at Puberty or Menopause) in Offspring
100(1)
4.6.1 Farm Animal Models
100(1)
4.6.2 Rodent Models
100(1)
4.6.3 Humans/Primates
101(1)
4.7 Summary and Conclusion
101(1)
References
102(7)
5 Small Non-Coding RNAS in Gametogenesis 109(18)
Lukasz Smorag
D.V. Krishna Pantakani
5.1 Small Non-Coding RNAs
109(1)
5.2 Function of sncRNAs in Gametogenesis
109(10)
5.2.1 miRNAs Biogenesis
110(2)
5.2.2 Function of miRNAs in the Process of Spermatogenesis
112(3)
5.2.3 endo-siRNAs Biogenesis
115(1)
5.2.4 endo-siRNAs in the Process of Spermatogenesis
115(2)
5.2.5 pi-RNAs Biogenesis
117(1)
5.2.6 Role of piRNAs in Male Germ Cell Development
117(2)
Acknowledgment
119(1)
References
119(8)
6 The Ovarian Follicle of Cows as a Model for Human 127(18)
Marc-Andre Sirard
6.1 Introduction
127(1)
6.1.1 Why We Know More About Cow Than Human Reproduction
127(1)
6.2 A Similar Physiology of Folliculogenesis
128(3)
6.2.1 Basic Physiology of Reproduction
128(1)
6.2.2 Time from Primordial Follicle to Ovulation
129(1)
6.2.3 Follicular Waves
130(1)
6.2.4 Characteristics of the Dominant Follicle
131(1)
6.3 Assisted Reproduction
131(5)
6.3.1 Response to Ovarian Stimulation
132(1)
6.3.2 Response to FSH Coasting
133(1)
6.3.3 Response to IVM
134(1)
6.3.4 Biomarker Analysis
134(2)
6.4 Testing the Competence Hypothesis
136(1)
6.5 Conclusion
136(1)
References
136(9)
7 Production of Energy and Determination of Competence: Past Knowledge, Present Research, and Future Opportunities in Oocyte and Embryo Metabolism 145(32)
Jason R. Herrick
Elena Silva
Rebecca L. Krisher
7.1 Introduction
145(1)
7.2 Measuring Metabolism
145(3)
7.2.1 Approaches
145(2)
7.2.2 Limitations
147(1)
7.3 The Relationship Between Oocyte Metabolism and Quality
148(4)
7.3.1 Energy Substrates During Oocyte Maturation
148(1)
7.3.2 Oocyte Metabolic Pathways
149(2)
7.3.3 Oocyte Metabolism of Fatty Acids
151(1)
7.4 Embryo Metabolism
152(5)
7.4.1 Precompaction: More Than Just Pyruvate
153(1)
7.4.2 Postcompaction: More Than Just Glucose
154(1)
7.4.3 Lactate: The Other Carbohydrate
155(1)
7.4.4 Noncarbohydrates
156(1)
7.5 Metabolic Biomarkers
157(1)
7.5.1 The Oocyte
157(1)
7.5.2 The Embryo
158(1)
7.6 Toward Personalized Culture Media: Formulating Media for Specific Maternal Conditions
158(3)
7.6.1 Maternal Impact on Embryo Development
158(1)
7.6.2 Impaired Embryo Metabolism
159(1)
7.6.3 Mitochondrial Dysfunction
159(1)
7.6.4 Endoplasmic Reticulum Stress
160(1)
7.7 Summary
161(1)
References
162(15)
8 Signal Transduction Pathways in Oocyte Maturation 177(36)
Francois J. Richard
Nicolas Santiquet
Annick Bergeron
Daulat Raheem Khan
8.1 Introduction
177(4)
8.1.1 Oocyte Maturation
178(1)
8.1.2 Oocyte Nuclear Maturation
178(1)
8.1.3 Cumulus Cell Expansion
179(1)
8.1.4 The Impact of FSH During In Vitro Maturation
179(2)
8.2 Phosphodiesterase
181(11)
8.2.1 Overview
181(1)
8.2.2 Cyclic Nucleotide Signaling
182(1)
8.2.3 Phosphodiesterase Superfamily
182(1)
8.2.4 Oocyte Meiosis and cAMP
183(1)
8.2.5 PDE3A
184(2)
8.2.6 PDE8A
186(1)
8.2.7 Cyclic GMP and PDE5/6
187(1)
8.2.8 Cellular Compartmentalization of Cyclic Nucleotide Signaling
188(1)
8.2.9 C-Type Natriuretic Peptide (CNP) and cGMP
189(3)
8.3 Gap Junction Communications
192(1)
8.3.1 Connexin, Connexon, and Gap Junctions
192(1)
8.3.2 Gap Junction Communications and Oocyte Maturation
193(1)
8.4 Metabolic Switch (AMPK)
193(5)
8.4.1 Overview
193(1)
8.4.2 Structure and Regulation of AMPK
194(1)
8.4.3 Activators of AMPK
194(1)
8.4.4 Downstream Targets of AMPK
195(1)
8.4.5 AMPK in Reproductive Function
195(1)
8.4.6 AMPK in Oocyte Function
196(2)
8.5 Conclusion
198(1)
References
198(15)
9 Pig Models of Reproduction 213(22)
B.R. Mordhorst
R.S. Prather
9.1 Introduction
213(1)
9.2 Early Embryonic Development
213(2)
9.3 Oocyte Maturation
215(1)
9.4 Fertilization
216(1)
9.5 Tubouterine Contractility
216(1)
9.6 Development to the Blastocyst Stage
216(1)
9.7 Pregnancy and Developmental Programming
217(5)
9.8 Puberty
222(1)
9.9 Reproductive Disease
223(1)
9.10 Summary
223(1)
Acknowledgments
223(1)
References
223(12)
10 The Mare as an Animal Model for Reproductive Aging in the Woman 235(12)
Elaine M. Carnevale
10.1 Introduction
235(1)
10.2 Ovarian Activity and Reproductive Cycles
236(2)
10.2.1 Ovarian Reserve
236(1)
10.2.2 Assessment of Antral Follicles
236(1)
10.2.3 Reproductive Cycles
237(1)
10.2.4 Reproductive Senescence
238(1)
10.3 The Follicle
238(1)
10.3.1 Follicle Growth and Selection
238(1)
10.3.2 Follicular Environment
238(1)
10.4 Fertility
239(1)
10.4.1 Natural Decline in Fertility with Aging
239(1)
10.4.2 Assisted Reproductive Procedures
239(1)
10.4.3 Maternal Age and Pregnancy Failure
240(1)
10.5 The Oocyte
240(2)
10.5.1 Oocyte Donation
240(1)
10.5.2 Oocyte Morphology and Viability
241(1)
10.6 Conclusions
242(1)
References
242(5)
11 Spotlight on Reproduction in Domestic Dogs as a Model for Human Reproduction 247(112)
Shirley J. Wright
11.1 Introduction
247(8)
11.1.1 Scope of the
Chapter
247(1)
11.1.2 Dog's Importance to Modern Human Society
247(1)
11.1.3 Dog Taxonomy
248(1)
11.1.4 Dog Origin
248(2)
11.1.5 Dog Breeds
250(1)
11.1.6 Dog Genome
251(3)
11.1.7 Dog as a Model for Human Genetic Disorders
254(1)
11.1.8 Dog Life span
255(1)
11.2 Dog Reproduction
255(66)
11.2.1 Dog Onset of Puberty
255(1)
11.2.2 Dog Fertility
256(1)
11.2.3 Reproductive Anatomy of the Male Dog
256(4)
11.2.4 Reproductive Physiology of the Male Dog
260(20)
11.2.5 Reproductive Anatomy of the Female Dog
280(7)
11.2.6 Reproductive Physiology of the Female Dog
287(11)
11.2.7 Dog Fertilization
298(20)
11.2.8 Dog Pregnancy, Development and Birth
318(3)
11.3 Dog-Assisted Reproductive Technology
321(7)
11.3.1 Artificial Insemination
321(1)
11.3.2 Superovulation
322(1)
11.3.3 Oocyte In Vitro Maturation
322(1)
11.3.4 In Vitro Fertilization
323(1)
11.3.5 Intracytoplasmic Sperm Injection
324(1)
11.3.6 Embryo Transfer
325(1)
11.3.7 Cryopreservation
325(1)
11.3.8 Sperm Sexing
326(1)
11.3.9 Somatic Cell Nuclear Transfer in Dogs
327(1)
11.3.10 Dog Embryonic Stem Cells and Induced Pluripotent Stem Cells
327(1)
11.3.11 Genetically Modified Dogs
328(1)
11.4 Dog Contraception
328(1)
11.5 The Dog as a Model for Human Reproduction
328(4)
11.5.1 Disorders of Sexual Development
329(1)
11.5.2 Cancer
330(1)
11.5.3 Obesity
331(1)
11.5.4 Dog Infertility
331(1)
11.5.5 Aneuploidy
331(1)
11.6 Concluding Statements
332(1)
Acknowledgments
333(1)
References
333(26)
12 Animal Models of Inflammation During Pregnancy 359(24)
Karen E. Racicot
Keith E. Latham
12.1 Introduction
359(1)
12.2 Local Inflammation of the Pregnant Female Reproductive Tract
360(1)
12.2.1 Introduction
360(1)
12.2.2 In liter° Inflammation and Adverse Pregnancy Outcomes
360(1)
12.2.3 Ascending Infections and Adverse Pregnancy Outcomes
361(1)
12.3 Systemic Inflammation During Pregnancy
361(4)
12.3.1 Introduction
361(2)
12.3.2 Systemic Viral or Bacterial Infection
363(1)
12.3.3 Maternal Stress: Chronic Sterile Inflammation
364(1)
12.3.4 Preeclampsia-Related Inflammation Models
364(1)
12.3.5 Models of Antiphospholipid Antibody Syndrome (APS)
365(1)
12.4 Genetic Models and Cellular Manipulation to Study Inflammation During Pregnancy
365(5)
12.4.1 Introduction
365(1)
12.4.2 Breeding Cross Models of Induced Inflammation
365(2)
12.4.3 Genetically Modified Models of Inflammation and Pregnancy
367(1)
12.4.4 Immune Cell Manipulation to Study Inflammation
367(3)
12.5 Inflammation During Pregnancy and Offspring Disease
370(2)
12.5.1 Introduction
370(1)
12.5.2 Models of Inflammation During Pregnancy Resulting in Offspring Disease
371(1)
12.6 Perspectives and Conclusions
372(1)
Acknowledgments
373(1)
References
373(10)
13 Practical Approaches, Achievements, and Perspectives in the Study on Signal Transduction in Oocyte Maturation and Fertilization: Focusing on the African Clawed Frog Xenopus laevisas an Animal Model 383(18)
Ken-ichi Sato
13.1 Introduction to Reproductive Biology of Frog Oocytes and Eggs
383(1)
13.2 Practical Approaches
383(12)
13.2.1 Maintenance of Adult Frogs
383(1)
13.2.2 Collection of Immature Oocytes and Unfertilized Eggs
384(1)
13.2.3 Preparation of Sperm
385(1)
13.2.4 In Vitro Oocyte Maturation and Fertilization
386(1)
13.2.5 Microinjection and Other Pharmacological Treatments
386(4)
13.2.6 Biochemical Fractionations of Oocytes and Eggs
390(1)
13.2.7 Biochemical and Cell Biological Assays
391(2)
13.2.8 Indirect Immunofluorescent Study
393(1)
13.2.9 Protein Identification by Mass Spectrometry Analysis
394(1)
13.2.10 Emerging Approaches: Live-Cell Imaging and Genome Manipulations
394(1)
13.3 Achievements and Perspectives
395(1)
Acknowledgments
396(1)
Appendix
396(3)
References
399(2)
14 Prezygotic Chromosomal Examination of Mouse Spermatozoa 401(8)
Hiroyuki Watanabe
Hiroyuki Tateno
14.1 Introduction
401(1)
14.2 Procedure of Sperm Chromosome Screening
402(2)
14.2.1 Sperm Genome Cloning Using an Androgenic Embryo (Step (a))
402(1)
14.2.2 Induction of PCC for Rapid Chromosome Visualization (Step (b))
403(1)
14.2.3 Production of Diploid Embryos by Fusion of Blastomere with MII Oocytes (Step (c))
403(1)
14.3 Practical Use of SCS Before Fertilization
404(2)
14.4 Conclusion
406(1)
Acknowledgments
406(1)
Addendum
406(1)
References
406(3)
15 Molecular and Cellular Aspects of Mammalian Sperm Acrosomal Exocytosis 409(18)
Florenza A. La Spina
Cintia Stival
Dario Krapf
Mariano G. Buffone
15.1 Introduction
409(1)
15.2 Structure of the Acrosome
409(3)
15.3 Intermediate Stages of Exocytosis
412(1)
15.4 Sperm Capacitation Prepare the Sperm to Undergo Acrosomal Exocytosis
412(2)
15.5 Physiological Site for the Occurrence of Acrosomal Exocytosis
414(2)
15.6 SNARES and Other Proteins from the Fusion Machinery
416(1)
15.7 Hyperpolarization
417(1)
15.8 Actin Cytoskeleton
417(1)
15.9 Calcium
418(1)
References
419(8)
16 Sperm Chromatin Dynamics Associated with Male Fertility in Mammals 427(8)
Naseer A. Kutchy
Sule Dogan
Abdullah Kaya
Arlindo Moura
Erdogan Memili
16.1 Introduction
427(2)
16.2 Sperm Chromatin Structure Modulates Sperm Nuclear Shape and Function
429(1)
16.3 The Bull Is a Suitable Model for the Study of Male Fertility in Humans
430(1)
16.4 Conclusions and Prospects
430(1)
Acknowledgments
431(1)
References
431(4)
17 Epigenome Modification and Ubiquitin-Dependent Proteolysis During Pronuclear Development of the Mammalian Zygote: Animal Models to Study Pronuclear Development 435(32)
Jan Nevoral
Peter Sutovsky
17.1 Introduction
435(1)
17.2 Milestones of Pronuclear Development
436(2)
17.3 Nuclear Envelope, Nuclear Pore Complexes, and Nuclear Lamina Changes During Pronuclear Development
438(2)
17.4 Molecular Mechanism of Paternal and Maternal Pronucleus Biogenesis
440(2)
17.5 Role of UPS in Pronuclear Biogenesis
442(1)
17.6 Posttranslational Modifications of Pronuclear Histones
443(3)
17.7 Sirtuin Family Histone Deacetylases in Gametogenesis and Development
446(1)
17.8 Clinical and Technological Considerations
447(3)
17.9 Conclusions
450(1)
Acknowledgments
450(1)
References
450(17)
18 Alterations of the Epigenome Induced by the Environment in Reproduction 467(18)
Zhao-Jia Ge
Shen Yin
Heide Schatten
18.1 Introduction
467(1)
18.2 Epigenetic Reprogramming
467(3)
18.2.1 The Epigenetic Reprogramming in Germ Lines
469(1)
18.2.2 The Epigenetic Reprogramming in Early Embryo
470(1)
18.3 Environment and Epigenetic Alterations
470(2)
18.4 Animal Models Used in Reproduction to Research Epigenetic Alterations Induced by the Environment
472(3)
18.4.1 Viable Yellow (AvY) Mouse Model
472(1)
18.4.2 Axin 1 Mouse (Fu) Model
472(1)
18.4.3 Micronutrient Animal Models
472(1)
18.4.4 The Protein-Restricted Diet Model
473(1)
18.4.5 The Caloric Restriction Model
473(1)
18.4.6 The Animal Model of Zinc Deficiency
473(1)
18.4.7 Undernutrition Models
473(1)
18.4.8 The Obese Model
473(1)
18.4.9 The Diabetes Mellitus Model
474(1)
18.4.10 Polycystic Ovary Syndrome (PCOS)
474(1)
18.4.11 The Aging Model
474(1)
18.4.12 Other Models
474(1)
18.5 Effects of Environment on Epigenetic Modifications in Humans
475(1)
18.6 Epigenetics and Assisted Reproductive Technology (ART)
475(1)
18.7 Priorities for the Future
476(1)
Acknowledgments
476(1)
References
476(9)
19 Toward Development of Pluripotent Porcine Stem Cells by Road Mapping Early Embryonic Development 485(24)
Stoyan Petkov
Kristine Freude
Kaveh Mashayekhi
Poul Hyttel
Vanessa Hall
19.1 Introduction
485(4)
19.2 Current Status on the Pluripotent State in the Pig Embryo
489(2)
19.3 Current Status of the Establishment of Porcine Embryonic Stem Cells (pESCs)
491(3)
19.4 Current Status in Establishment of Porcine-Induced Pluripotent Stem Cells
494(5)
19.5 Future Perspectives: Use of Global Profiling on Pluripotent Cells from Pig Embryo and Pluripotent Stem Cells
499(2)
19.6 Discussion and Conclusions
501(1)
Acknowledgments
502(1)
References
502(7)
20 Applications of Metabolomics in Reproductive Biology 509(10)
Ana Luiza Cazaux Velho
Rodrigo Oliveira
Thu Dinh
Arlindo Moura
Abdullah Kaya
Erdogan Memili
20.1 Introduction
509(1)
20.2 Metabolomics and Reproductive Biology
510(3)
20.3 Metabolomics Studies in Large Animals as Models for Humans
513(1)
20.4 Conclusions and Future Prospects
513(1)
Acknowledgments
514(1)
Conflict of Interest
514(1)
References
514(5)
21 Cryopreservation of Mammalian Oocytes 519(38)
Muhammad Anzar
21.1 Principles of Cryopreservation
519(3)
21.1.1 Water and Cell Cryopreservation
519(1)
21.1.2 Cryoprotectants
520(2)
21.1.3 Cooling Rate
522(1)
21.2 Cryopreservation of Mammalian Oocytes
522(20)
21.2.1 History
522(7)
21.2.2 Mammalian Oocyte
529(1)
21.2.3 Cryopreservation Methods
530(12)
Acknowledgments
542(1)
Abbreviations
543(1)
References
543(14)
Index 557
About the Editors Heide Schatten Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, USA Gheorghe M. Constantinescu Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, USA