Atjaunināt sīkdatņu piekrišanu

E-grāmata: Anomalous Magnetic Moment of the Muon

  • Formāts: EPUB+DRM
  • Sērija : Springer Tracts in Modern Physics 274
  • Izdošanas datums: 17-Aug-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319635774
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Springer Tracts in Modern Physics 274
  • Izdošanas datums: 17-Aug-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319635774
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This research monograph covers extensively the theory of the muon anomalous magnetic moment and provides estimates of the theoretical uncertainties. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. In addition, quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. Perspectives for future improvements of the theoretical and experimental precision are considered. The new edition features improved theoretical predictions to match upcoming experiments, like the one at Fermilab. Additionally the new more precise basic parameters are presented.
Part I Basic Concepts, Introduction to QED, g - 2 in a Nutshell, General Properties and Tools
1 Introduction
3(20)
References
18(5)
2 Quantum Field Theory and Quantum Electrodynamics
23(140)
2.1 Quantum Field Theory Background
23(13)
2.1.1 Concepts, Conventions and Notation
23(8)
2.1.2 C, P, T and CPT
31(5)
2.2 The Origin of Spin
36(11)
2.3 Quantum Electrodynamics
47(13)
2.3.1 Perturbation Expansion, Feynman Rules
50(5)
2.3.2 Transition Matrix--Elements, Particle--Antiparticle Crossing
55(3)
2.3.3 Cross Sections and Decay Rates
58(2)
2.4 Regularization and Renormalization
60(11)
2.4.1 The Structure of the Renormalization Procedure
60(4)
2.4.2 Dimensional Regularization
64(7)
2.5 Tools for the Evaluation of Feynman Integrals
71(20)
2.5.1 ε = 4 - d Expansion, ε → + 0
71(1)
2.5.2 Bogolubov--Schwinger Parametrization
72(1)
2.5.3 Feynman Parametric Representation
73(1)
2.5.4 Euclidean Region, Wick--Rotations
73(3)
2.5.5 The Origin of Analyticity
76(9)
2.5.6 Scalar One--Loop Integrals
85(3)
2.5.7 Tensor Integrals
88(3)
2.6 One--Loop Renormalization
91(52)
2.6.1 The Photon Propagator and the Photon Self--Energy
91(10)
2.6.2 The Electron Self--Energy
101(7)
2.6.3 Charge Renormalization
108(9)
2.6.4 Dyson-- and Weinberg--Power-Counting Theorems
117(3)
2.6.5 The Running Charge and the Renormalization Group
120(11)
2.6.6 Bremsstrahlung and the Bloch--Nordsieck Prescription
131(12)
2.7 Pions in Scalar QED and Vacuum Polarization by Vector Mesons
143(5)
2.8 Note on QCD: The Feynman Rules and the Renormalization Group
148(15)
References
158(5)
3 Lepton Magnetic Moments: Basics
163(86)
3.1 Equation of Motion for a Lepton in an External Field
163(5)
3.2 Magnetic Moments and Electromagnetic Form Factors
168(33)
3.2.1 Main Features: An Overview
168(25)
3.2.2 The Anomalous Magnetic Moment of the Electron
193(6)
3.2.3 The Anomalous Magnetic Moment of the Muon
199(2)
3.3 Structure of the Electromagnetic Vertex in the SM
201(4)
3.4 Dipole Moments in the Non--Relativistic Limit
205(2)
3.5 Projection Technique
207(6)
3.6 Properties of the Form Factors
213(1)
3.7 Dispersion Relations
214(12)
3.7.1 Dispersion Relations and the Vacuum Polarization
216(10)
3.8 Dispersive Calculation of Feynman Diagrams
226(10)
3.9 ζ - Values, Polylogarithms and Related Special Functions
236(13)
References
241(8)
Part II A Detailed Account of the Theory, Outline of Concepts of the Experiment, Status and Perspectives
4 Electromagnetic and Weak Radiative Corrections
249(94)
4.1 g - 2 in Quantum Electrodynamics
249(38)
4.1.1 One--Loop QED Contribution
251(1)
4.1.2 Two--Loop QED Contribution
252(3)
4.1.3 Three--Loop QED Contribution
255(6)
4.1.4 Four--Loop QED Contribution
261(9)
4.1.5 Five--Loop QED Contribution
270(3)
4.1.6 Four- and Five--Loop Analytic Results and Crosschecks
273(14)
4.2 Weak Contributions
287(56)
4.2.1 Weak One--Loop Effects
294(1)
4.2.2 Weak Two--Loop Effects
295(39)
4.2.3 Two--Loop Electroweak Contributions to ae
334(3)
References
337(6)
5 Hadronic Effects
343(228)
5.1 Hadronic Vacuum Polarization
345(84)
5.1.1 Vacuum Polarization Effects and e + e- Data
345(11)
5.1.2 Integrating the Experimental Data and Estimating the Error
356(4)
5.1.3 The Cross-Section e+ e- → Hadrons
360(4)
5.1.4 Photon Vacuum Polarization and the Complex αQED(s)
364(5)
5.1.5 R(s) in Perturbative QCD
369(5)
5.1.6 Non--Perturbative Effects, Operator Product Expansion
374(3)
5.1.7 Leading Hadronic Contribution to (g - 2) of the Muon
377(15)
5.1.8 Addendum I: The Hadronic Contribution to the Running Fine Structure Constant
392(4)
5.1.9 Addendum II: The Hadronic Contribution to the Running SU(2)L Gauge Coupling
396(4)
5.1.10 Addendum III: τ Spectral Functions versus e+ e- Annihilation Data
400(2)
5.1.11 A Minimal Model: VMD + sQED Resolving the τ versus e+ e- Puzzle
402(18)
5.1.12 Hadronic Higher Order Contributions
420(7)
5.1.13 Next-to-Next Leading Order Hadronic Contributions
427(2)
5.2 Hadronic Light--by--Light Scattering
429(99)
5.2.1 Calculating the Hadronic LbL Contribution
434(4)
5.2.2 Sketch on Hadronic Models
438(7)
5.2.3 Pion--Exchange Contribution
445(5)
5.2.4 The π0γγ Transition Form Factor
450(37)
5.2.5 Exchanges of Axial-Vector Mesons
487(6)
5.2.6 Exchanges of Scalar Mesons
493(3)
5.2.7 Tensor Exchanges
496(1)
5.2.8 The Pion--Loop
497(4)
5.2.9 The Quark-Loop
501(2)
5.2.10 A Summary of Results
503(3)
5.2.11 The Dispersive Approach
506(22)
5.3 Lattice QCD
528(43)
5.3.1 Lattice QCD Approach to HVP
535(15)
5.3.2 Lattice QCD Approach to HLbL
550(8)
References
558(13)
6 The g - 2 Experiments
571(38)
6.1 Overview on the Principle of the Experiment
571(6)
6.2 Particle Dynamics
577(3)
6.3 Magnetic Precession for Moving Particles
580(7)
6.3.1 g - 2 Experiment and Magic Momentum
582(5)
6.4 Theory: Production and Decay of Muons
587(8)
6.5 Muon g - 2 Results
595(2)
6.6 Ground State Hyperfine Structure of Muonium
597(2)
6.7 Single Electron Dynamics and the Electron g - 2
599(4)
6.8 The Upcoming Experiments: What Is New?
603(6)
References
606(3)
7 Comparison Between Theory and Experiment and Future Perspectives
609(74)
7.1 Experimental Results Confront Standard Theory
609(5)
7.2 New Physics in g - 2
614(50)
7.2.1 Generic Contributions from Physics Beyond the SM
621(5)
7.2.2 Flavor Changing Processes
626(2)
7.2.3 Anomalous Couplings
628(1)
7.2.4 Two-Higgs Doublet Models
629(10)
7.2.5 Supersymmetry
639(22)
7.2.6 Dark Photon/Z and Axion Like Particles
661(3)
7.3 Outlook on the Upcoming Experiments
664(1)
7.4 Perspectives for the Future
665(18)
References
674(9)
Appendix A List of Acronyms 683(4)
Index 687
Prof. Dr. Jegerlehner studied physics and received his PhD at Bern University, Switzerland. In 1976 he obtained his Habilitation at Free University of Berlin, Germany.

He had been member of the research project Quantumdynamics at the Center of Interdisciplinary Research (ZIF), Bielefeld University. Since 1983 full professor of Theoretical Physics at the University of Bielefeld. 1989-1995 staff at Paul-Scherrer-Institute, Villigen, Switzerland, with teaching position at ETH Zürich and ETH Lausanne, Switzerland. Since 1995 head of the DESY Zeuthen theory group and professor at Humboldt-University Berlin.

He had been visiting scientist/professor at Bell Laboratories, Murray Hill/N.J., USA, Wuppertal University, Germany, Bern University, Switzerland, Hannover University, Germany, Centre de Physique Theorique CRNS-Luminy, Marseille, France, Technical University Dresden, Germany.

In 2007 he received a Research Grant Institute of Nuclear Physics of the Polish Academy of Sciences, Krakow/Poland and had been awarded in 2008 the Alexander von Humboldt Honorary Research Fellowship by the Polish Science Foundation University Katowice, Poland.