Atjaunināt sīkdatņu piekrišanu

E-grāmata: Antenna Design for Cognitive Radio

  • Formāts: 320 pages
  • Izdošanas datums: 31-Jan-2016
  • Izdevniecība: Artech House Publishers
  • ISBN-13: 9781630813697
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 84,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 320 pages
  • Izdošanas datums: 31-Jan-2016
  • Izdevniecība: Artech House Publishers
  • ISBN-13: 9781630813697
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This one-of-a-kind new resource presents cognitive radio from an antenna design perspective and introduces the concept of cognitive radio as a protocol that benefits from under-utilized regions of the spectrum. This book covers topics that govern the operation of a cognitive radio and discusses the use of reconfigurable antennas, reconfigurable filtennas, and MIMO antennas for cognitive radio. The analysis and design of different antenna systems are presented, compared and evaluated. New approaches to improve spectrum efficiency are explored by demonstrating how to design software controlled cognitive radio antenna systems. This new resource shows how to communicate using either interweave or underlay cognitive radio and demonstrates the benefits of designing appropriate sensing and communicating antennas.
Preface xi
1 Introduction to Cognitive Radio 1(20)
1.1 Why Cognitive Radio?
1(1)
1.2 Towards a Cognitive Radio
2(2)
1.3 Spectrum Interweave and Underlay
4(4)
1.4 The Cognitive Radio Cycle of Actions (ODAL)
8(1)
1.5 The Observe Part of a Cognitive Radio Cycle
9(2)
1.5.1 Interweave Mode
9(1)
1.5.2 Underlay Mode
10(1)
1.6 The Decide Part of a Cognitive Radio Cycle
11(1)
1.6.1 Interweave Mode
12(1)
1.6.2 Underlay Mode
12(1)
1.7 The Act Part of a Cognitive Radio Cycle
12(2)
1.7.1 Interweave Mode
14(1)
1.7.2 Underlay Mode
14(1)
1.8 The Learn Part of a Cognitive Radio Cycle
14(1)
1.8.1 Interweave Mode
15(1)
1.8.2 Underlay Mode
15(1)
1.9 Discussion
15(1)
References
16(5)
2 Software-Defined Radio and Cognitive Radio: A Systems Overview 21(22)
2.1 Introduction
21(1)
2.2 What Is Software-Defined Radio?
22(2)
2.3 Wireless Transceiver Architectures
24(7)
2.3.1 Single-Band Architectures
24(2)
2.3.2 Multiband Architectures
26(2)
2.3.3 Software-Defined Radio Architectures
28(3)
2.4 Cognitive Radio Architectures
31(3)
2.5 Tunable Analog RF Components
34(4)
2.5.1 Tunable Bandpass Filters
35(1)
2.5.2 Tunable Power Amplifiers
36(2)
2.6 Discussion
38(1)
References
38(5)
3 Antenna Design Requirements for Cognitive Radio 43(22)
3.1 Introduction
43(1)
3.2 Antenna Parameters
44(4)
3.2.1 Reflection Coefficient
44(2)
3.2.2 Realized Gain
46(1)
3.2.3 Radiation Pattern
46(1)
3.2.4 Quality Factor
47(1)
3.3 Antenna Design Limitations
48(3)
3.4 Antenna Design Specifications for Cognitive Radio
51(6)
3.4.1 Mobile Terminals
52(1)
3.4.2 Spectrum Interweave Cognitive Radio
53(3)
3.4.3 Spectrum Underlay Cognitive Radio
56(1)
3.5 Antenna Design for Cognitive Radio Antenna Systems Using Reconfigurable Filters
57(2)
3.6 Comparison Between the Antenna Design Requirements for the Spectrum Interweave and Underlay Cognitive Radio
59(1)
3.7 Antenna Design Limitations for Cognitive Radio Interweave and Underlay
60(1)
3.8 Discussion
61(1)
References
62(3)
4 Wideband-Sensing Antennas for Cognitive Radio 65(42)
4.1 Introduction
65(1)
4.2 History of UWB Antennas
66(1)
4.3 Categories of UWB Antennas
67(2)
4.4 Frequency-Independent Antennas
69(4)
4.4.1 Printed Spiral Antenna
70(3)
4.5 Nonplanar UWB Antennas
73(2)
4.6 Planar UWB Antennas
75(9)
4.6.1 Miniaturized Triangular Sheet Antenna
77(1)
4.6.2 Planar UWB Monopole
78(6)
4.7 Printed UWB Antennas
84(4)
4.8 Printed UWB Slot Antennas
88(1)
4.9 Printed UWB Horn Antennas
89(4)
4.9.1 Coplanar Vivaldi Antenna
90(1)
4.9.2 Antipodal Vivaldi Antenna
91(2)
4.10 Printed UWB Antenna with Notches
93(6)
4.10.1 Printed UWB Antenna with Fixed Notches
93(3)
4.10.2 Printed UWB Antenna with Reconfigurable Notches
96(3)
4.11 Discussion
99(1)
References
100(7)
5 Communicating Reconfigurable Antennas for Cognitive Radio 107(56)
5.1 Introduction
107(1)
5.2 Overview of Reconfigurable Antennas
108(5)
5.3 Antenna Reconfiguration Using RF MEMS
113(4)
5.4 Antenna Reconfiguration Using PIN Diodes
117(6)
5.5 Antenna Reconfiguration Using Varactors
123(6)
5.6 Antenna Reconfiguration Using Thermal-Switching Components
129(2)
5.7 Antenna Reconfiguration Using Optical Photoconductive Switches
131(4)
5.8 Graph Modeling Switch-Reconfigurable Antennas for Redundancy Reduction
135(2)
5.9 Antenna Reconfiguration Using Mechanical Actuators
137(3)
5.10 Antenna Reconfiguration Using Material Change
140(5)
5.11 Implementation of Reconfigurable Antennas in Spectrum Interweave Cognitive Radio
145(9)
5.12 Analysis of Reconfigurable Antennas in Cognitive Radio
154(1)
5.13 Discussion
154(1)
References
155(8)
6 Reconfigurable Filtennas for Cognitive Radio 163(30)
6.1 Introduction
163(1)
6.2 Design of Microwave Filters
164(6)
6.3 Printed Transmission Line Characteristics
170(2)
6.4 Bandpass Filter Designs
172(2)
6.5 Bandstop Filter Designs
174(2)
6.6 Ultrawideband Filter Designs
176(3)
6.7 Reconfigurable Filters
179(6)
6.8 Reconfigurable Filtennas
185(2)
6.9 Discussion
187(2)
References
189(4)
7 Implementation of MIMO Antennas on Cognitive Radio 193(28)
7.1 Introduction
193(1)
7.2 Modeling the Propagation Effects
194(2)
7.3 MIMO Antenna Basics
196(5)
7.4 Isolation Improvement in MIMO Antenna Systems
201(4)
7.5 Reconfigurable MIMO Antenna Structures
205(7)
7.6 MIMO Antennas for Cognitive Radio
212(5)
7.7 Discussion
217(1)
References
218(3)
8 Machine-Learning Implementation in Cognitive Radio 221(22)
8.1 Introduction
221(1)
8.2 Categories of Machine-Learning Algorithms
222(1)
8.3 Basic Review of Neural Networks
223(4)
8.3.1 Neural Network Concepts
223(1)
8.3.2 Neural Network Learning Connections' Weights
224(1)
8.3.3 Back-Propagation Learning
225(1)
8.3.4 Mathematical Model of a Neural Network
225(2)
8.4 Neural Network FPGA Controller Design
227(2)
8.4.1 Neural Network Modeling Procedure
228(1)
8.5 Neural Network Implementation
229(7)
8.5.1 Neural Network Modeling of a Reconfigurable Antenna Based on PIN Diodes
230(2)
8.5.2 Neural Network Modeling of a Varactor-Based Reconfigurable Filtenna
232(4)
8.5.3 Neural Network Modeling of a Mechanically Reconfigurable Antenna
236(1)
8.6 Switch-Failure Correction in Frequency-Reconfigurable Antenna Arrays Using Neural Networks
236(3)
8.7 FPGA Selection and the Cognitive Radio Processor
239(1)
8.8 Discussion
240(1)
References
240(3)
9 Cognitive Radio for Radar and Space Applications 243(20)
9.1 Introduction
243(1)
9.2 The Concept of Cognitive Radar
244(2)
9.3 Cognitive Radar Analysis
246(1)
9.4 Cognitive Radar Versus Adaptive Radar Architectures
247(3)
9.5 Cognitive Radar Networks
250(1)
9.6 Possible Difficulties in Cognitive Radar
250(1)
9.7 Cognitive Radio in Space Communications
251(1)
9.8 Cognitive Radio Communication Between Satellites and Terrestrial Stations
252(4)
9.9 Cognitive Radio Communication Between Satellites
256(2)
9.10 Challenges in Cognitive Radio for Space Communication
258(1)
9.11 Discussion
259(1)
References
260(3)
10 The Future of Cognitive Radio 263(4)
About the Authors 267(2)
Index 269
Youssef Tawk is an assistant professor at Notre Dame University Louaize, Lebanon. He received a Ph.D. in electricalengineering and completed a post-doc fellowship from the University of New Mexico.Joseph Costantine is an assistant professor at the American University of Beirut, Lebanon. He received a Ph. D. inelectrical engineering from the University of New Mexico. Christos G. Christodoulou is a Fellow member of IEEE and adistinguished professor of electrical and computer engineering at the University of New Mexico. He is the recipient ofthe 2010 IEEE John Krauss Antenna Award for his work on reconfigurable fractal antennas, the Lawton-Ellis Award andthe Gardner Zemke Professorship at the University of New Mexico. He holds a M.S. and a Ph.D. in Electrical Engineeringfrom North Carolina State University. Christos is the series editor of antennas at Artech House.