Atjaunināt sīkdatņu piekrišanu

E-grāmata: Anti-Disturbance Control for Systems with Multiple Disturbances

(Beihang University, Beijing, China), (Yangzhou University, China)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 100,17 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Developing the essential theory for architecting and tackling issues faced during complex realistic engineering problems, this volume focuses on enhanced anti-disturbance control and filtering theory and applications. The book specifically addresses thenovel disturbance observer based control (DOBC) methodologies for uncertain and nonlinear systems in time domain. It also examines novel anti-disturbance control and filtering with the composite hierarchical architecture to enhance control and filtering for the complex control systems with multiple disturbances. The book provides application examples, including flight control, robotic system, altitude control, and initial alignment to show how to use the theoretical methods in engineering"--

"Preface Unknown disturbances originating from various sources exist in all practical controlled systems, where unmodeled dynamics and uncertainties can also be formulated as an equivalent disturbance. As such, disturbance attenuation and rejection for nonlinear systems is a challenging objective in the area of control. Analysis and synthesis for non-linear control systems with disturbances has been one of the most active research fields in the past few decades. There are several drawbacks to be overcomein future studies on non-linear antidisturbance control. First, in engineering applications, the disturbance may originate from various sources and can be described by a composite form rather than a single variable. In this case, the H8 control may be too conservative to provide highly accurate control performance. On the other hand, disturbance rejection approaches usually need precise models for both the controlled system and the disturbance system. This confines their applications since the disturbance is also described by a single output variable from a precise exo-system and robustness is difficult to guarantee. For example, although disturbance observer based control is a valid disturbance rejection strategy for non-linear systems with harmonic disturbances, the performance of the system will deteriorate if the disturbance model cannot be described precisely. In filtering problems, both external noises, measurement noises and structure vibrations, and also unmodeled, nonlinear and uncertain dynamics are usually merged into the disturbance variable. "--

Developing the essential theory for architecting and tackling issues faced during complex realistic engineering problems, this volume focuses on enhanced anti-disturbance control and filtering theory and applications. The book specifically addresses the novel disturbance observer based control (DOBC) methodologies for uncertain and nonlinear systems in time domain. It also examines novel anti-disturbance control and filtering with the composite hierarchical architecture to enhance control and filtering for the complex control systems with multiple disturbances. The book provides application examples, including flight control, robotic system, altitude control, and initial alignment to show how to use the theoretical methods in engineering

List of Figures
xv
List of Tables
xxi
Foreword xxiii
Preface xxv
Abbreviations and Notations xxvii
Chapter 1 Developments in CHADC for Systems with Multiple Disturbances
1(8)
1.1 Introduction
1(1)
1.2 Disturbance Observer Based Control
2(4)
1.2.1 LDOBC
2(3)
1.2.2 NLDOBC
5(1)
1.3 Composite Hierarchical Anti-Disturbance Control
6(3)
Chapter 2 Disturbance Attenuation and Rejection for Nonlinear Systems via DOBC
9(18)
2.1 Introduction
9(1)
2.2 Problem Statement
10(1)
2.3 Full-Order Observers for Known Nonlinearity
11(3)
2.4 Reduced-Order Observers for Known Nonlinearity
14(3)
2.5 Reduced-Order Observers for Unknown Nonlinearity
17(2)
2.6 Simulations on A4D Aircraft
19(7)
2.6.1 The Case with Known Nonlinearity
19(1)
2.6.2 The Case with Unknown Nonlinearity
20(6)
2.7 Conclusion
26(1)
Chapter 3 Composite DOBC and H∞ Control for Continuous Models
27(18)
3.1 Introduction
27(1)
3.2 Formulation of the Problem
28(1)
3.3 Composite DOBC and H∞ Control for the Case with Known Nonlinearity
29(6)
3.3.1 Disturbance Observer
29(1)
3.3.2 Composite DOBC and H∞ Control
30(5)
3.4 Composite DOBC and H∞ Control for the Case with Unknown Nonlinearity
35(2)
3.4.1 Disturbance Observer
35(1)
3.4.2 Composite DOBC and H∞ Control
36(1)
3.5 Simulation Example
37(2)
3.5.1 The Case with Known Nonlinearity
38(1)
3.5.2 The Case with Unknown Nonlinearity
38(1)
3.6 Conclusion
39(6)
Chapter 4 Composite DOBC and TSM Control for Nonlinear Systems with Disturbances
45(36)
4.1 Introduction
45(1)
4.2 Formulation of the Problem
46(1)
4.3 Composite DOBC and TSM Control for the Case with Known Nonlinearity
47(9)
4.3.1 Disturbance Observer
47(2)
4.3.2 Composite DOBC and TSM Control
49(7)
4.4 Composite DOBC and TSM Control for the Case with Unknown Nonlinearity
56(3)
4.4.1 Disturbance Observer
56(1)
4.4.2 Composite DOBC and TSM Control
57(2)
4.5 Simulation Examples
59(15)
4.5.1 Simulation on Jet Transport
59(11)
4.5.2 Simulation on Hard Disk Drive Actuator
70(4)
4.6 Conclusion
74(7)
Chapter 5 Saturating Composite DOBC and H∞ Control for Discrete Time Delay Systems
81(24)
5.1 Introduction
81(1)
5.2 Formulation of the Problem
82(1)
5.3 Composite Control with Saturation for the Case with Known Nonlinearity
82(8)
5.3.1 DOBC with Saturation
83(2)
5.3.2 Composite DOBC and H∞ Control
85(5)
5.4 Composite Control with Saturation for the Case with Unknown Nonlinearity
90(3)
5.4.1 DOBC with Saturation
90(2)
5.4.2 Composite DOBC and H∞ Control
92(1)
5.5 Simulation on A4D Aircraft
93(4)
5.5.1 The Case with Known Nonlinearity
95(1)
5.5.2 The Case with Unknown Nonlinearity
96(1)
5.6 Conclusion
97(8)
Chapter 6 Composite DOBC Plus H∞ Control for MJSs with Multiple Disturbances
105(18)
6.1 Introduction
105(1)
6.2 Problem Statement and Preliminaries
106(1)
6.3 Composite DOBC Plus H∞ Control for the Case with Known Nonlinearity
107(6)
6.4 Composite DOBC Plus H∞ Control for the Case with Unknown Nonlinearity
113(2)
6.5 Illustrative Example
115(4)
6.6 Conclusion
119(4)
Chapter 7 Robust Consensus of Multi-Agent Systems with Time Delays and Disturbances
123(18)
7.1 Introduction
123(1)
7.2 Preliminaries
124(1)
7.3 Consensus Algorithm of Multi-Agent Systems with Exogenous Disturbances
125(9)
7.3.1 Multi-Agent Systems with Disturbances
125(1)
7.3.2 Pinning Control for Multi-Agent Systems without Disturbances
126(2)
7.3.3 Disturbance Observers for Multi-Agent Systems with Disturbances
128(6)
7.4 Disturbance Observers for Multi-Agent Systems with Switching Topologies
134(1)
7.5 Example Study
135(1)
7.6 Conclusion
136(5)
Chapter 8 Hierarchical Anti-Disturbance Adaptive Controller Design
141(14)
8.1 Introduction
141(1)
8.2 Problem Formulation and Preliminaries
142(1)
8.3 Nonlinear Disturbance Observer
143(2)
8.4 Stability of the DOBC Systems
145(3)
8.5 Hierarchical Adaptive Control for the Composite Systems
148(2)
8.6 Simulation Examples
150(3)
8.7 Conclusion
153(2)
Chapter 9 Estimation and Rejection of Unknown Sinusoidal Disturbances Using TSNLDO
155(24)
9.1 Introduction
155(2)
9.2 Formulation of the Problem
157(1)
9.3 Two-Step Nonlinear Disturbance Observer
158(6)
9.3.1 The First-Step Disturbance Observer
159(3)
9.3.2 The Second-Step Disturbance Observer
162(2)
9.4 DOBC with Stability Analysis
164(5)
9.5 Simulation
169(3)
9.6 Conclusion
172(7)
Chapter 10 Anti-Disturbance PD Attitude Control and Stabilization of Flexible Spacecraft
179(12)
10.1 Introduction
179(1)
10.2 Problem Formulation
180(1)
10.3 Composite Controller Design
181(4)
10.3.1 Disturbance Observer Design
181(2)
10.3.2 Stability of the Composite Systems
183(2)
10.4 Simulations
185(2)
10.5 Conclusion
187(4)
Chapter 11 Robust Multi-Objective Initial Alignment for INS with Multiple Disturbances
191(18)
11.1 Introduction
191(1)
11.2 SINS Error Model for Stationary Base
192(3)
11.3 Robust Multi-Objective Filter Design
195(5)
11.4 Simulation Examples
200(6)
11.4.1 SINS in Laboratory Environment
201(2)
11.4.2 SINS in Airborne Environment
203(3)
11.5 Conclusion
206(3)
Chapter 12 Nonlinear Initial Alignment for INS with Multiple Disturbances
209(18)
12.1 Introduction
209(2)
12.2 Nonlinear INS Error Modeling
211(5)
12.3 Robust Anti-Disturbance Filter Design
216(5)
12.4 Simulation Examples
221(3)
12.5 Conclusion
224(3)
Chapter 13 Robust Fault Diagnosis Method Based on Disturbance Observer
227(12)
13.1 Introduction
227(1)
13.2 Problem Formulation and Preliminaries
228(1)
13.3 Fault Diagnosis Based on Disturbance Observer
228(4)
13.4 Simulation Examples
232(2)
13.5 Conclusion
234(5)
Chapter 14 Adaptive Fault Diagnosis Based on Disturbance Observer
239(14)
14.1 Introduction
239(1)
14.2 Problem Formulation and Preliminaries
239(1)
14.3 Fault Diagnosis Observer Design
240(7)
14.3.1 Disturbance Observer
240(4)
14.3.2 Fault Diagnosis Observer
244(3)
14.4 Simulation Examples
247(4)
14.5 Conclusion
251(2)
Chapter 15 Anti-Disturbance FTC for Systems with Multiple Disturbances
253(14)
15.1 Introduction
253(1)
15.2 Problem Formulation and Preliminaries
254(1)
15.3 Robust Fault Tolerant Controller Design
255(6)
15.3.1 Disturbance Observer
255(1)
15.3.2 Fault Diagnosis Observer
256(1)
15.3.3 Composite Fault Tolerant Controller
257(4)
15.4 Simulation Examples
261(2)
15.5 Conclusion
263(4)
References 267(14)
Index 281
Lei Guo, Songyin Cao