Atjaunināt sīkdatņu piekrišanu

E-grāmata: Antieigenvalue Analysis [World Scientific e-book]

(Univ Of Colorado Boulder, Usa)
  • Formāts: 260 pages
  • Izdošanas datums: 27-Dec-2011
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-13: 9789814366298
  • World Scientific e-book
  • Cena: 110,38 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formāts: 260 pages
  • Izdošanas datums: 27-Dec-2011
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-13: 9789814366298
Karl Gustafson is the creater of the theory of antieigenvalue analysis. Its applications spread through fields as diverse as numerical analysis, wavelets, statistics, quantum mechanics, and finance.Antieigenvalue analysis, with its operator trigonometry, is a unifying language which enables new and deeper geometrical understanding of essentially every result in operator theory and matrix theory, together with their applications. This book will open up its methods to a wide range of specialists.
Preface ix
1 Introduction
1(14)
Perspective
1(1)
1.1 A Recent Referee Speaks
2(1)
1.2 The Original Motivation
2(1)
1.3 The Essential Entities
3(3)
1.4 Simple Examples and a Picture
6(3)
1.5 Applications to-Date
9(1)
1.6 Organization of this Book
10(4)
Commentary
12(2)
1.7 Exercises
14(1)
2 The Original Motivation: Operator Semigroups
15(10)
Perspective
15(1)
2.1 Abstract Initial Value Problems
16(1)
2.2 The Hille-Yosida-Phillips-Lumer Theorem
17(1)
2.3 The Rellich-Kato-Nelson-Gustafson Theorem
17(1)
2.4 The Multiplicative Perturbation Theorem
18(2)
2.5 When are Positive Operator Products Positive?
20(1)
2.6 Nonnegative Contraction Semigroups
21(2)
Commentary
22(1)
2.7 Exercises
23(2)
3 The Essentials of Antieigenvalue Theory
25(28)
Perspective
25(1)
3.1 Convexity Properties of Norm Geometry
26(1)
3.2 The Min-Max Theorem
27(6)
3.3 The Euler Equation
33(6)
3.4 Higher Antieigenvalues and Antieigenvectors
39(7)
3.5 The Triangle Inequality
46(1)
3.6 Extended Operator Trigonometry
47(3)
Commentary
49(1)
3.7 Exercises
50(3)
4 Applications in Numerical Analysis
53(16)
Perspective
53(1)
4.1 Gradient Descent: Kantorovich Bound is Trigonometric
54(2)
4.2 Minimum Residual Ax = b Solvers
56(1)
4.3 Richardson Relaxation Schemes (e.g. SOR)
57(3)
4.4 Very Rich Trigonometry Underlies ADI
60(1)
4.5 Domain Decomposition Multilevel Schemes
61(2)
4.6 Preconditioning and Condition Numbers
63(4)
Commentary
65(2)
4.7 Exercises
67(2)
5 Applications in Wavelets, Control, Scattering
69(22)
Perspective
69(1)
5.1 The Time Operator of Wavelets
70(4)
5.2 Frame Operator Trigonometry
74(2)
5.3 Wavelet Reconstruction is Trigonometric
76(2)
5.4 New Basis Trigonometry
78(7)
5.5 Trigonometry of Lyapunov Stability
85(1)
5.6 Multiplicative Perturbation and Irreversibility
86(3)
Commentary
88(1)
5.7 Exercises
89(2)
6 The Trigonometry of Matrix Statistics
91(32)
Perspective
91(1)
6.1 Statistical Efficiency
91(10)
6.2 The Euler Equation versus the Inefficiency Equation
101(4)
6.3 Canonical Correlations and Rayleigh Quotients
105(2)
6.4 Other Statistics Inequalities
107(5)
6.5 Prediction Theory: Association Measures
112(3)
6.6 Antieigenmatrices
115(3)
Commentary
116(2)
6.7 Exercises
118(5)
7 Quantum Trigonometry
123(32)
Perspective
123(2)
7.1 Bell-Wigner-CHSH Inequalities
125(4)
7.2 Trigonometric Quantum Spin Identities
129(3)
7.3 Quantum Computing: Phase Issues
132(3)
7.4 Penrose Twistors
135(7)
7.5 Elementary Particles
142(2)
7.6 Trigonometry of Quantum States
144(9)
Commentary
152(1)
7.7 Exercises
153(2)
8 Financial Instruments
155(28)
Perspective
155(6)
8.1 Some Remarks on Mathematical Finance
161(6)
8.2 Quantos: Currency Options
167(5)
8.3 Multi-Asset Pricing: Spread Options
172(3)
8.4 Portfolio Rebalancing
175(2)
8.5 American Options with Random Volatility
177(2)
8.6 Risk Measures for Incomplete Markets
179(3)
Commentary
181(1)
8.7 Exercises
182(1)
9 Other Directions
183(20)
Perspective
183(1)
9.1 Operators
183(3)
9.2 Angles
186(3)
9.3 Optimization
189(2)
9.4 Equalities
191(3)
9.5 Geometry
194(5)
9.6 Applications
199(1)
Commentary
200(1)
9.7 Exercises
200(3)
Appendix A Linear Algebra
203(2)
A.1 Matrix Analysis
203(1)
A.2 Operator Theory
204(1)
Appendix B Hints and Answers to Exercises
205(24)
Bibliography 229(12)
Index 241