Preface |
|
ix | |
|
|
1 | (14) |
|
|
1 | (1) |
|
1.1 A Recent Referee Speaks |
|
|
2 | (1) |
|
1.2 The Original Motivation |
|
|
2 | (1) |
|
1.3 The Essential Entities |
|
|
3 | (3) |
|
1.4 Simple Examples and a Picture |
|
|
6 | (3) |
|
|
9 | (1) |
|
1.6 Organization of this Book |
|
|
10 | (4) |
|
|
12 | (2) |
|
|
14 | (1) |
|
2 The Original Motivation: Operator Semigroups |
|
|
15 | (10) |
|
|
15 | (1) |
|
2.1 Abstract Initial Value Problems |
|
|
16 | (1) |
|
2.2 The Hille-Yosida-Phillips-Lumer Theorem |
|
|
17 | (1) |
|
2.3 The Rellich-Kato-Nelson-Gustafson Theorem |
|
|
17 | (1) |
|
2.4 The Multiplicative Perturbation Theorem |
|
|
18 | (2) |
|
2.5 When are Positive Operator Products Positive? |
|
|
20 | (1) |
|
2.6 Nonnegative Contraction Semigroups |
|
|
21 | (2) |
|
|
22 | (1) |
|
|
23 | (2) |
|
3 The Essentials of Antieigenvalue Theory |
|
|
25 | (28) |
|
|
25 | (1) |
|
3.1 Convexity Properties of Norm Geometry |
|
|
26 | (1) |
|
|
27 | (6) |
|
|
33 | (6) |
|
3.4 Higher Antieigenvalues and Antieigenvectors |
|
|
39 | (7) |
|
3.5 The Triangle Inequality |
|
|
46 | (1) |
|
3.6 Extended Operator Trigonometry |
|
|
47 | (3) |
|
|
49 | (1) |
|
|
50 | (3) |
|
4 Applications in Numerical Analysis |
|
|
53 | (16) |
|
|
53 | (1) |
|
4.1 Gradient Descent: Kantorovich Bound is Trigonometric |
|
|
54 | (2) |
|
4.2 Minimum Residual Ax = b Solvers |
|
|
56 | (1) |
|
4.3 Richardson Relaxation Schemes (e.g. SOR) |
|
|
57 | (3) |
|
4.4 Very Rich Trigonometry Underlies ADI |
|
|
60 | (1) |
|
4.5 Domain Decomposition Multilevel Schemes |
|
|
61 | (2) |
|
4.6 Preconditioning and Condition Numbers |
|
|
63 | (4) |
|
|
65 | (2) |
|
|
67 | (2) |
|
5 Applications in Wavelets, Control, Scattering |
|
|
69 | (22) |
|
|
69 | (1) |
|
5.1 The Time Operator of Wavelets |
|
|
70 | (4) |
|
5.2 Frame Operator Trigonometry |
|
|
74 | (2) |
|
5.3 Wavelet Reconstruction is Trigonometric |
|
|
76 | (2) |
|
5.4 New Basis Trigonometry |
|
|
78 | (7) |
|
5.5 Trigonometry of Lyapunov Stability |
|
|
85 | (1) |
|
5.6 Multiplicative Perturbation and Irreversibility |
|
|
86 | (3) |
|
|
88 | (1) |
|
|
89 | (2) |
|
6 The Trigonometry of Matrix Statistics |
|
|
91 | (32) |
|
|
91 | (1) |
|
6.1 Statistical Efficiency |
|
|
91 | (10) |
|
6.2 The Euler Equation versus the Inefficiency Equation |
|
|
101 | (4) |
|
6.3 Canonical Correlations and Rayleigh Quotients |
|
|
105 | (2) |
|
6.4 Other Statistics Inequalities |
|
|
107 | (5) |
|
6.5 Prediction Theory: Association Measures |
|
|
112 | (3) |
|
|
115 | (3) |
|
|
116 | (2) |
|
|
118 | (5) |
|
|
123 | (32) |
|
|
123 | (2) |
|
7.1 Bell-Wigner-CHSH Inequalities |
|
|
125 | (4) |
|
7.2 Trigonometric Quantum Spin Identities |
|
|
129 | (3) |
|
7.3 Quantum Computing: Phase Issues |
|
|
132 | (3) |
|
|
135 | (7) |
|
|
142 | (2) |
|
7.6 Trigonometry of Quantum States |
|
|
144 | (9) |
|
|
152 | (1) |
|
|
153 | (2) |
|
|
155 | (28) |
|
|
155 | (6) |
|
8.1 Some Remarks on Mathematical Finance |
|
|
161 | (6) |
|
8.2 Quantos: Currency Options |
|
|
167 | (5) |
|
8.3 Multi-Asset Pricing: Spread Options |
|
|
172 | (3) |
|
8.4 Portfolio Rebalancing |
|
|
175 | (2) |
|
8.5 American Options with Random Volatility |
|
|
177 | (2) |
|
8.6 Risk Measures for Incomplete Markets |
|
|
179 | (3) |
|
|
181 | (1) |
|
|
182 | (1) |
|
|
183 | (20) |
|
|
183 | (1) |
|
|
183 | (3) |
|
|
186 | (3) |
|
|
189 | (2) |
|
|
191 | (3) |
|
|
194 | (5) |
|
|
199 | (1) |
|
|
200 | (1) |
|
|
200 | (3) |
|
Appendix A Linear Algebra |
|
|
203 | (2) |
|
|
203 | (1) |
|
|
204 | (1) |
|
Appendix B Hints and Answers to Exercises |
|
|
205 | (24) |
Bibliography |
|
229 | (12) |
Index |
|
241 | |