Atjaunināt sīkdatņu piekrišanu

Aphids as Crop Pests 2nd edition [Hardback]

Edited by (Rothamsted Research, Harpenden, UK), Contributions by (Ce), Contributions by , Contributions by (University of Catania, Italy), Contributions by (Rothamsted Research, UK), Contributions by (The James Hutton Institute, UK), Contributions by (Rothamsted Research, UK), Edited by (University of Reading, UK), Contributions by , Contributions by (The Natural History Museum, London, UK)
  • Formāts: Hardback, 714 pages, height x width x depth: 246x189x50 mm, weight: 2108 g
  • Izdošanas datums: 23-Aug-2017
  • Izdevniecība: CABI Publishing
  • ISBN-10: 1780647093
  • ISBN-13: 9781780647098
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 259,74 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 714 pages, height x width x depth: 246x189x50 mm, weight: 2108 g
  • Izdošanas datums: 23-Aug-2017
  • Izdevniecība: CABI Publishing
  • ISBN-10: 1780647093
  • ISBN-13: 9781780647098
Citas grāmatas par šo tēmu:
Aphids are among the major global pest groups, causing serious economic damage to many food and commodity crops in most parts of the world. This revision and update of the well-received first edition published ten years ago reflects the expansion of research in genomics, endosymbionts and semiochemicals, as well as the shift from control of aphids with insecticides to a more integrated approach imposed by increasing resistance in the aphids and government restrictions on pesticides. The book remains a comprehensive and up-to-date reference work on the biology of aphids, the various methods of controlling them and the progress of integrated pest management as illustrated by ten case histories. Helmut van Emden is Emeritus Professor of Horticulture at the University of Reading, UK. He has researched on aphids for over 50 years and has wide international experience, including in the tropics. Richard Harrington retired in 2015 as Head of the Rothamsted Insect Survey, with which he worked for 36 years on aphid monitoring and forecasting. He led the EU project "EXAMINE" (Exploitation of Aphid Monitoring In Europe) which brought together colleagues involved in aphid monitoring throughout Europe and beyond.

Recenzijas

From reviews of the first edition: "The editors and authors are to be congratulated on producing an excellent book."--European Journal of Entomology

Preface to the First Edition xix
Preface to the Second Edition xxiii
List of Contributors
xxv
1 Taxonomic Issues
1(36)
Roger L. Blackman
Victor F. Eastop
Introduction
1(2)
Interpreting Variation in Aphids
3(1)
The Taxonomy of Pest Aphids -- What's in a Name?
4(1)
The Use of Molecular Methods in Aphid Taxonomy
5(1)
The 15 Aphid Species of Most Agricultural Importance
6(21)
Acyrthosiphon pisum (pea aphid)
6(2)
Aphis craccivora (cowpea aphid)
8(1)
Aphis fabae (black bean aphid)
9(2)
Aphis gossypii (cotton or melon aphid)
11(2)
Aphis spiraecola (spiraea aphid or green citrus aphid)
13(1)
Diuraphis noxia (Russian wheat aphid)
14(1)
Lipaphis pseudobrassicae (mustard aphid, also known as the false cabbage aphid)
15(1)
Macrosiphum euphorbiae (potato aphid)
16(1)
Metopolophium dirhodum (rose--grain aphid)
17(2)
Myzus persicae (peach--potato aphid)
19(2)
Rhopalosiphum maidis (corn leaf aphid)
21(1)
Rhopalosipbum padi (bird cherry--oat aphid)
22(1)
Schizaphis graminum (greenbug)
23(1)
Sitobion avenae (grain aphid)
24(2)
Therioaphis trifolii (alfalfa aphid or yellow clover aphid)
26(1)
Conclusions
27(1)
References
27(10)
2 Aphid Genomics and its Contribution to Understanding Aphids as Crop Pests
37(13)
Linda M. Field
Chris Bass
T.G. Emyr Davies
Martin S. Williamson
Jing-Jiang Zhou
Introduction
37(1)
Aphid Genome Properties
38(1)
Polyphenism and Reproduction
39(1)
Host Location
40(2)
Aphid-Plant Interactions During Feeding
42(1)
Growth and Development
42(1)
Immunity
43(1)
Virus Transmission
43(1)
Aphid Control, Insecticides and Resistance
43(1)
Symbiosis
44(2)
Conclusions
46(1)
References
46(4)
3 Population Genetic Issues: New Insights Using Conventional Molecular Markers and Genomics Tools
50(31)
Hugh D. Loxdale
Owain Edwards
Denis Tagu
Christoph Vorburger
Introduction
50(2)
Aphids as pests of crops and their adaptations
50(1)
What the use of molecular markers in aphid studies has so far revealed
51(1)
The way forward: new genomics approaches to studying aphids
51(1)
Identification of Species
52(1)
Identification of Clones
52(3)
Host-plant Adaptation
55(3)
Cereal aphids
55(1)
Pea aphid
56(1)
Cotton aphid or melon aphid
57(1)
Peach--potato and tobacco aphids
57(1)
Life Cycle in Relation to Climate
58(1)
Spatial and Temporal Dynamics of Aphids, Including Short- and Longer-distance Aerial Movements
59(4)
Metapopulations
63(1)
Superclones ... or Superclans?
63(4)
Tracing the Origin of Aphid Genotypes
67(1)
Detecting Foreign Bodies in Aphids Using Molecular Markers
67(2)
Aphid Genomics
69(2)
Acknowledgements
71(1)
References
71(10)
4 Life Cycles and Polyphenism
81(17)
Jim Hardie
Introduction
81(1)
Types of Life Cycle
81(5)
Host-alternating aphids
82(2)
Non-host-alternating aphids
84(1)
Two-year life cycles
85(1)
Holocyclic and anholocyclic life cycles
85(1)
Factors Determining the Production of Different Morphs
86(5)
Determination of sexual morphs
86(1)
Determination of asexual winged morphs
87(2)
Diapausing morphs
89(1)
Colour polymorphism
89(1)
Physiological control of polyphenism
90(1)
The Importance of Different Morphs for Crop Protection
91(1)
Pest status
91(1)
Virus transmission
91(1)
Forecasting
91(1)
The Importance of Polyphenism in Determining Pest Status
91(1)
Conclusions
92(1)
References
93(5)
5 Growth and Development
98(16)
Simon R. Leather
Caroline S. Awmack
Michael P.D. Garratt
Introduction
98(1)
Definitions
98(1)
Uses of aphid growth and developmental rates
99(1)
Measurement of Aphid Growth and Developmental Rates
99(2)
Growth rates
99(1)
Developmental rates
100(1)
The intrinsic rate of increase, rm
101(1)
Experimental Techniques
101(2)
Aphid cages
101(1)
Disadvantages of aphid cages
101(2)
Limitations on the Use of Aphid Growth and Development Measures
103(2)
The reliability of size x fecundity relationships
103(1)
Variable growth, development and reproductive rates
104(1)
Decoupling development times and fecundity
104(1)
Factors Affecting Aphid Growth and Development
105(2)
Genotype effects
105(1)
Host-plant effects
105(1)
Difference between nymphs destined to be apterous and alate
105(1)
Effects of temperature
106(1)
Population-scale effects
106(1)
Conclusions
107(1)
References
107(7)
6 Nutrition and Symbiosis
114(18)
Angela E. Douglas
Helmut F. van Emden
Introduction
114(1)
Microbial Symbiosis in Aphids
114(2)
Diversity of microorganisms
114(1)
Location of symbiotic microorganisms
115(1)
Acquisition of symbiotic microorganisms
115(1)
Significance of symbiotic microorganisms to aphids
116(1)
Carbon Nutrition
116(3)
Sugars
116(1)
Lipids
117(2)
Nitrogen Nutrition
119(1)
Amino acids and their sources
119(1)
The fate of amino acids in aphids
119(1)
Other dietary sources of nitrogen
120(1)
Minerals and Micronutrients
120(1)
Artificial Diet
120(6)
History of artificial diets for aphids
120(1)
Recipe for the diet and practical procedures
121(3)
Relation between the diet and plant phloem sap
124(1)
Aphid performance on the diet
125(1)
How useful is the diet for studies on aphid nutrition?
126(1)
Conclusions and Future Prospects
126(1)
Acknowledgements
127(1)
References
127(5)
7 Aphids and Stress
132(16)
Jeremy Pritchard
Laura H. Vickers
Introduction
132(1)
Temperature Effects on Aphids
132(1)
Adaptation to Cold Stress
133(1)
Overwintering specialist morphs
133(1)
Acclimation
134(1)
Effects of High Temperature
134(2)
Behavioural adaptations to high temperature
134(1)
Emerging technologies to study aphids and stress
135(1)
Physiological adaptations to high temperature
135(1)
Temperature Effects on Diet
136(1)
Drought and Aphids
137(4)
Haemolymph osmotic homeostasis
138(1)
Flow do aphids osmoregulate?
138(1)
Secondary effects of drought on aphids -- nutrition
139(1)
Secondary effects of host-plant drought on aphids -- allocation to defence
140(1)
Reactive oxygen species (ROS) as stress and defence
140(1)
Molecular Clues to Aphid Stress Responses
141(1)
Conclusions
142(1)
References
142(6)
8 Chemical Ecology
148(25)
John A. Pickett
Toby J.A. Bruce
Robert T. Glinwood
Introduction
148(2)
Methods
150(1)
Interactions between Aphids
150(7)
Sex pheromones
150(3)
Alarm pheromones
153(2)
Social interactions: aggregation, density regulation and avoidance
155(2)
Interaction with Plants
157(3)
Host-plant semiochemicals
157(3)
Aphid effects on the plant
160(1)
Interaction with Natural Enemies
160(4)
Responses of natural enemies to aphid-produced chemicals
160(3)
Responses of natural enemies to aphid-induced plant signals
163(1)
Conclusions
164(1)
References
165(8)
9 Host-plant Selection and Feeding
173(23)
Jan Pettersson
W. Fred Tjallingii
Jim Hardie
Introduction
173(1)
Orientation and Host-plant Finding
173(3)
Visual responses
174(1)
Olfactory responses
174(2)
Plant Contact after Landing
176(1)
Probing -- Plant Penetration
177(10)
Pathway phase
178(4)
Phloem phase
182(4)
Xylem phase
186(1)
Incompatible Aphid--plant Interaction (Plant Resistance)
187(1)
Host Alternation and Changes in Host-plant Preference
187(1)
Plant Predisposition to Aphid Probing
188(1)
Conclusions
189(1)
References
190(6)
10 Aphid Movement: Process and Consequences
196(29)
Alberto Fereres
Michael E. Irwin
Gail E. Kampmeier
Introduction
196(1)
Pest Status
196(1)
The Nature of Aphid Movement
197(1)
Conceptual Framework for Aphid Movement
197(3)
Modes of transport
197(1)
Scales of displacement
198(1)
Aphid life stages, morphs
199(1)
The Migratory Process
200(5)
Events leading to take-off
201(1)
Take-off and ascent
202(2)
Horizontal translocation
204(1)
Switching off the migratory urge
205(1)
Appetitive Dispersal
205(4)
Stimuli that cause aphids to disperse in an appetitive manner
205(3)
Response to multiple perturbations
208(1)
Landing and alighting cues
209(1)
Incorporating Aphid Movement into Pest Management Strategies
209(7)
Components of IPM programmes
210(3)
Categories of aphids as agricultural pests
213(3)
Conclusions
216(1)
Acknowledgements
216(1)
References
216(9)
11 Predators, Parasitoids and Pathogens
225(37)
Jacques Brodeur
Ann E. Hajek
George E. Heimpel
John J. Sloggett
Manfred Mackauer
Judith K. Pell
Wolfgang Volkl
Introduction
225(1)
Aphid predators
226(9)
Ladybird beetles (Coleoptera: Coccinellidae)
226(3)
Syrphidac (hover flies)
229(2)
Chrysopidae and Hemerobiidae (lacewings)
231(2)
Cecidomyiidae (predatory midges)
233(1)
Other arthropod predators
234(1)
Aphid Parasitoids
235(6)
General biology
235(2)
Foraging behaviour and host finding
237(2)
Patterns of resource use
239(2)
Aphid Pathogens
241(4)
General biology of aphid-pathogenic fungi
241(1)
Specialized biologies of entomophthoroid species
242(1)
Epizootiology of entomophthoroid fungi
243(2)
Intraguild Interactions and Mutualistic Ants
245(3)
Intraguild predation and competition
245(2)
The effect of mutualistic interactions with ants on predation and parasitism
247(1)
The role of defensive aphid endosymbionts
248(1)
Conclusion
248(1)
References
249(13)
12 Population Dynamics: Cycles and Patterns
262(18)
Samuel G. Leigh
Helmut F. van Emden
Introduction
262(1)
Overwintering Populations
262(1)
Spring Populations
263(1)
Onset of Dispersal to Crops
264(1)
Arrival on Crops
264(1)
The Population Cycle on Crops
264(8)
Methodology
264(2)
Factors causing numerical change
266(3)
The development of populations on crops
269(3)
Emigration at the End of the Season
272(1)
Longer-term Regulation of Aphid Populations
272(3)
Conclusion
275(1)
References
276(4)
13 Aphid Population Dynamics: From Fields to Landscapes
280(23)
James R. Bell
Jean-Sebastien Pierre
Charles-Antoine Dedryver
Introduction
280(2)
The Aphid System: An Overview
282(1)
Essential Life-cycle Issues that Modellers Need to Understand: Parthenogenesis, Viviparity and Polyphenism
283(1)
Processes Related to Aphid Population Dynamics
284(1)
Extrinsic Forcing Variables
284(1)
Abiotic forcing variables: climate
285(4)
Biotic forcing variables: plants
285(2)
Biotic forcing variables: regulation by natural enemies
287(2)
Biological and Demographic Processes: Modelling Birth, Ageing, Moulting, Reproduction, Migration and Death
289(5)
Modelling birth through fecundity
289(1)
Modelling age and moulting
290(1)
Modelling the migration process
291(2)
Modelling death
293(1)
Comprehensive Model
294(1)
Scaling up from Fields to Landscapes: Demographic Considerations
294(3)
Modeller's headache: three issues to scaling up
294(1)
Demographic characteristics of aphid populations that should be implicit within models
294(3)
Conclusions
297(1)
Acknowledgements
298(1)
References
298(5)
14 Feeding Injury
303(20)
Fiona L. Goggin
Sharron S. Quisenberry
Xinzhi Ni
Introduction
303(1)
The Causes, Signs and Outcomes of Infestation: Injury, Symptoms and Damage
304(4)
Terminology
304(1)
Common symptoms of infestation
304(1)
Detection and quantification of symptoms induced by Aphidoidea
305(3)
Modes of Injury by Aphidoidea
308(2)
Plant penetration and mechanical injury
308(1)
Aetiological agents in Aphidoidea oral secretions
308(2)
The Physiological Bases for Symptom Development and Damage
310(5)
Morphological modifications
310(1)
Cytological damage
310(2)
Disruption of resource allocation and transport
312(1)
Perturbati on of photosynthesis
313(2)
Environmental Effects on Insect Damage: Aphidoidea in a Changing Climate
315(1)
Conclusions
315(1)
Acknowledgements
316(1)
References
316(7)
15 Transmission of Plant Viruses
323(39)
Mark Stevens
Christophe Lacomme
Introduction
323(1)
Virus--Vector Interactions
323(1)
Aphids as Effective Virus Vectors
324(6)
Host selection related to virus acquisition and inoculation
324(4)
Early molecular events in aphid--plant interactions
328(1)
Virus-induced changes in plants on aphid vectors
329(1)
Transmission Modes of Plant Viruses by Aphids
330(10)
Non-persistent transmission
330(3)
Semi-persistent transmission
333(4)
Persistent transmission
337(3)
Epidemiology
340(2)
Biological factors
340(2)
Cultural practices
342(1)
Weather
342(1)
Disease Forecasting
342(1)
Disease Management Strategies
343(4)
Use of genotypes resistant to the virus and/or to the aphid vectors
343(1)
Elimination of virus sources
344(1)
Prevention or reduction of virus spread
345(2)
Conclusions
347(1)
Acknowledgements
347(1)
References
347(15)
16 Monitoring and Forecasting
362(20)
Richard Harrington
Maurice Hulle
Introduction
362(1)
Why Monitor and Forecast?
362(1)
What Should be Monitored and Forecast?
362(1)
Where Should Monitoring and Forecasting be Done?
363(1)
When Should Monitoring and Forecasting be Done?
363(1)
How Can Aphids be Monitored and Forecast?
363(13)
Monitoring
363(7)
Forecasting
370(6)
Conclusions
376(1)
Acknowledgements
376(1)
References
376(6)
17 Decision Support Systems
382(16)
Frederic Fabre
Charles-Antoine Dedryver
Introduction
382(1)
Making a DSS: the Biological Constraints of Dealing with Aphids
383(1)
Making an Aphid DSS: Some Basic Mathematical Constraints of Decision Making
383(2)
Aphi.net: a DSS for Managing Aphids Spreading Virus on Cereals
385(4)
Past and Present Aphid DSSs
389(4)
Conclusions
393(2)
Are aphid DSSs really short-lived and underused?
393(1)
How to improve aphid DSS adoption and usefulness
394(1)
Upcoming opportunities for the revival of DSSs
395(1)
Acknowledgements
395(1)
References
395(3)
18 Chemical Control
398(28)
Alan M. Dewar
Ian Denholm
Introduction
398(1)
Availability and Choice of Aphicides
398(1)
Modes of Action of Aphicides
399(3)
Carbamates (Group 1A) and organophosphates (1B)
399(1)
Pyrethroids (3A)
399(1)
Neonicotinoids (4A)
399(2)
Fymetrozine (9B) and flonicamid (9C)
401(1)
Diafenthiuron (12A)
401(1)
Tebufenpyrad (21)
401(1)
Spirotetramat (23)
401(1)
Cyantraniprole (28)
401(1)
Combination products
401(1)
Adjuvants and synergists
402(1)
Application
402(2)
Thresholds for Control
404(3)
Wheat and barley
404(1)
Pea
405(1)
Field bean
406(1)
Brassicas
406(1)
Cotton
406(1)
Sugar beet
406(1)
Top fruit
406(1)
Lettuce
406(1)
Soybean
406(1)
Efficacy
407(7)
Poaceae (cereal crops)
407(1)
Soft fruit
408(1)
Top fruit
408(1)
Solanaceae
409(1)
Chenopodiaceae (sugar beet)
410(1)
Fabaceae
411(1)
Brassicas
412(1)
Lettuce (Lactuca sativa)
412(1)
Other vegetables
413(1)
Malvaceae
413(1)
Other crops
414(1)
Conclusions
414(1)
References
415(11)
19 Insecticide Resistance
426(22)
Stephen P. Foster
Gregor Devine
Alan L. Devonshire
Introduction
426(1)
Diagnosis of Resistance in Aphids
426(2)
Biochemistry and Molecular Basis of Resistance
428(9)
Resistance mechanisms in Myzus persicae (peach--potato aphid)
428(5)
Resistance mechanisms in other aphid species
433(4)
Factors Affecting the Dynamics of Insecticide Resistance in the Field
437(3)
Selection pressures
437(1)
Ecological factors
437(2)
Pleiotropic effects of resistance
439(1)
Conclusions
440(1)
Acknowledgements
441(1)
References
441(7)
20 Biological Control
448(46)
Thierry Hance
Fatemeh Kohandani-Tafresh
Francoise Munaut
Introduction
448(1)
Natural Enemies
448(1)
Parasitoids
449(13)
Classical biological control
449(12)
Biological control by augmentation in field crops
461(1)
Predators
462(11)
Aphidoletes aphidimyza (predatory gall midge)
463(2)
Coccinellidae (ladybirds)
465(4)
Chrysopidae (lacewings)
469(4)
Syrphidae (hover flies)
473(1)
Entomopathogenic Fungal Species
473(5)
Taxonomic revision
474(1)
Mycoinsecticides and aphid biocontrol
474(4)
Future of mycopesticides and genomic advances
478(1)
General Conclusions
478(2)
References
480(14)
21 Cultural Control
494(21)
Mauricio G. Chang
Geoff M. Gurr
Jason M. Tylianakis
Steve D. Wratten
Introduction
494(1)
Overview
494(2)
Mulches
496(1)
Row Covers
497(1)
Particle Films
498(1)
Sowing and Planting Date
499(1)
Plant Density
500(1)
Crop Plant Pruning
500(1)
Irrigation and Fertilizer Management
501(1)
Intercropping, Living Mulches and Cover Crops
501(2)
Trap Crops
503(1)
Provision of Resources for Natural Enemies
504(2)
Provision of Refuges for Natural Enemies
506(2)
Conclusions
508(1)
References
508(7)
22 Host-plant Resistance
515(18)
Helmut F. van Emden
Introduction
515(1)
Types of Host-plant Resistance to Aphids
515(3)
Antixenosis (close to Painter's `non-preference')
516(1)
Antibiosis
516(1)
Tolerance
517(1)
What is the preferred type of resistance?
518(1)
Mechanisms of Host-plant Resistance to Aphids
518(6)
Mechanisms of antixenosis
518(2)
Mechanisms of antibiosis
520(3)
Mechanisms of tolerance
523(1)
Further Considerations
524(3)
Yield drag or other fitness costs
524(1)
Negative effects on natural enemies
524(1)
Problem trading
524(1)
Biotypes
525(1)
Spread of viruses
526(1)
Interactions with other control measures
526(1)
Conclusions
527(1)
Acknowledgement
527(1)
References
527(6)
23 Integrated Pest Management and Introduction to IPM Case Studies
533(12)
Helmut F. van Emden
Introduction
533(1)
Integration of Chemical and Biological Control
533(2)
Use of a selective active ingredient
534(1)
Dose reduction
534(1)
Selectivity in space
535(1)
Selectivity in time
535(1)
Integration of Chemical Control and Host-plant Resistance (HPR)
535(1)
Integration of Biological Control and HPR
536(2)
Numerical responses
536(1)
Functional responses
537(1)
Three-Way Integration of Chemical Control, HPR and Biological Control
538(1)
Integration of Cultural Control and Biological Control
539(1)
The 1PM Case Studies
539(2)
The crop scenarios
539(2)
Conclusions from the Case Studies
541(1)
References
541(4)
24 IPM Case Studies: Grain
545(12)
Hans-Michael Poehling
Thomas Thieme
Udo Heimbach
Introduction
545(1)
Basic Characteristics of the Main Aphid Species in Cereals (Species, Population Dynamics, Damage)
545(3)
Cereal aphids of major importance in central Europe
545(3)
Cereal aphids of minor importance in central Europe
548(1)
Monitoring and Control
548(4)
Monitoring, forecasting and decision-making systems
548(1)
Chemical control and pesticide resistance
549(1)
Biological control
549(1)
Cultural control
550(1)
Host-plant resistance
550(2)
Conclusions
552(1)
Executive Summary
552(1)
References
552(5)
25 IPM Case Studies: Sorghum
557(12)
J.P. Michaud
Introduction
557(1)
History of Schizaphis graminum on Sorghum
557(1)
Greenbug Management Practices
558(5)
Chemical control
558(2)
Host-plant resistance
560(1)
Biological control
561(2)
Cultural control
563(1)
The Big Picture
563(1)
Conclusions
564(1)
Executive Summary
565(1)
References
565(4)
26 IPM Case Studies: Leafy Salad Crops
569(9)
G. Mark Tatchell
Rosemary H. Collier
Gemma L. Hough
Introduction
569(1)
What are leafy salad crops?
569(1)
The IPM challenge
569(1)
The Aphids
570(1)
Components for Aphid IPM
571(2)
Chemicals and resistance to insecticides
571(1)
Chemical control -- reducing insecticides
571(1)
Biological control
571(1)
Host-plant resistance
572(1)
Modifying aphid behaviour
573(1)
IPM in Practice
573(2)
Assurance and accreditation schemes
573(1)
Practical control
573(2)
Executive Summary
575(1)
References
575(3)
27 IPM Case Studies: Brassicas
578(9)
Rosemary H. Collier
Stan Finch
Introduction
578(1)
Biology of Pest Aphids in the UK
578(1)
Integrated Crop Management
579(1)
Control Methods
580(4)
Chemical control
580(1)
Monitoring and forecasting
580(1)
Sampling and decision making
581(1)
Biological control
582(1)
Host-plant resistance
582(1)
Cultural control
583(1)
Executive Summary
584(1)
References
584(3)
28 IPM Case Studies: Cucurbits
587(10)
Susan E. Webb
Introduction
587(1)
Aphid-vectored Viruses Affecting Cucurbits
587(1)
Management Options for Aphids and Aphid-Vectored Viruses in Cucurbits
588(5)
Chemical control
588(1)
Biological control
589(2)
Host-plant resistance
591(1)
Cross-protection
591(1)
Cultural control
591(2)
IPM Programmes for Cucurbits that Include Aphid Management
593(1)
Executive Summary
593(1)
References
594(3)
29 IPM Case Studies: Seed Potato
597(10)
Jon Pickup
Christophe Lacomme
Introduction
597(1)
Potato Viruses and their Aphid Vectors
597(1)
Monitoring Aphids
598(1)
Mathematical Modelling
598(2)
Integrated Pest Management
600(1)
Cultural Control
600(4)
Seed potato certification
600(2)
Crop isolation from virus sources
602(1)
Chemical control
603(1)
Biological control
603(1)
Host-plant resistance
603(1)
Executive Summary
604(1)
References
604(3)
30 IPM Case Studies: Cotton
607(13)
Pierre J. Silvie
Thierry Brevault
Jean-Philippe Deguine
Introduction
607(1)
Damage and Economic Impact
607(2)
Disruption of plant growth
607(1)
Vector-borne diseases
608(1)
Sticky cotton
609(1)
Economic impact
609(1)
Main Biological and Ecological Traits of the Cotton Aphid
609(1)
Life cycle
609(1)
Host plants and host races
610(1)
Biological regulation
610(1)
Tools for IPM
610(4)
Host-plant resistance
611(1)
Cultural practices
611(1)
Biological control
611(1)
Cotton aphid management in organic cotton
612(1)
Chemical control
613(1)
The Case of Bt Cotton
614(1)
Perspectives
615(1)
Executive Summary
615(1)
References
616(4)
31 IPM Case Studies: Berry Crops
620(12)
Rufus Isaacs
A. Nicholas
E. Birch
Robert R. Martin
Introduction
620(1)
Aphid 1PM in Raspberry
620(4)
Aphid IPM in Blueberry
624(2)
Aphid IPM in Strawberry
626(1)
Aphid IPM in Grape
627(1)
Acknowledgements
627(1)
Executive Summary
627(1)
References
628(4)
32 IPM Case Studies: Deciduous Fruit Tree Aphids
632(11)
Sebastiano Barbagallo
Giuseppe E. Massimino Cucuzza
Piero Cravedi
Shinkichi Komazaki
Introduction
632(1)
Apple and Pear Aphids
632(4)
Damage and virus transmission
632(3)
Monitoring and economic thresholds
635(1)
Chemical and supervised control
636(1)
Biological control
636(1)
Stone-fruit Tree Aphids
636(5)
Damage and virus transmission
639(2)
Monitoring and economic thresholds
641(1)
Chemical and supervised control
641(1)
Biological control
641(1)
Acknowledgements
641(1)
Executive Summary
641(1)
References
642(1)
33 IPM Case Studies: Tropical and Subtropical Fruit Trees
643(12)
Sebastiano Barbagallo
Giuseppe E. Massimino Cocuzza
Piero Cravedi
Shinkichi Komazaki
Introduction
643(1)
Citrus Aphids
643(6)
Damage and virus transmission
644(1)
Monitoring and economic thresholds
644(1)
Chemical and supervised control
644(3)
Biological control
647(2)
Tropical Fruit Tree Aphids
649(3)
Damage and virus transmission
649(3)
Monitoring and economic thresholds
652(1)
Supervised chemical control
652(1)
Biological control
652(1)
Acknowledgements
652(1)
Executive Summary
652(1)
References
653(2)
Taxonomic Glossary 655(14)
Index 669
- Steve Wratten is a Professor of Ecology at Lincoln University, Principal Investigator in the Bio-Protection Research Centre , and a visiting professor at Charles Sturt University, Australia and at the Northwest Agriculture and Forestry University, China. He has previously studied or worked at the Universities of Reading, Glasgow, London, Cambridge and Southampton (UK) and Oregon State University (USA). Professor Wratten is a world-leading researcher in agro-ecology, with a focus on the biological control of pests and pollination. Professor Wratten has published more about 400 journal articles, 8 books, 90 book chapters, and has supervised more than 80 PhD students to completion. He has published papers in high-profile journals, including Nature, Ecology, Ecology Letters and Proceedings of the Royal Society of London. In 2014, he was named among the top 10 authors in the centenary editorial of the international journal Annals of Applied Biology (doi: 10.1111/aab.12093). Prof Wratten has contributed 38 papers to this journal since its inception.