Atjaunināt sīkdatņu piekrišanu

E-grāmata: Application of Artificial Intelligence to Assessment

Edited by , Edited by
  • Formāts: 223 pages
  • Sērija : The MARCES Book Series
  • Izdošanas datums: 01-Mar-2020
  • Izdevniecība: Information Age Publishing
  • ISBN-13: 9781641139533
  • Formāts - PDF+DRM
  • Cena: 81,93 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 223 pages
  • Sērija : The MARCES Book Series
  • Izdošanas datums: 01-Mar-2020
  • Izdevniecība: Information Age Publishing
  • ISBN-13: 9781641139533

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The general theme of this book is to present the applications of artificial intelligence (AI) in test development. In particular, this book includes research and successful examples of using AI technology in automated item generation, automated test assembly, automated scoring, and computerized adaptive testing. By utilizing artificial intelligence, the efficiency of item development, test form construction, test delivery, and scoring could be dramatically increased.

Chapters on automated item generation offer different perspectives related to generating a large number of items with controlled psychometric properties including the latest development of using machine learning methods. Automated scoring is illustrated for different types of assessments such as speaking and writing from both methodological aspects and practical considerations. Further, automated test assembly is elaborated for the conventional linear tests from both classical test theory and item response theory perspectives. Item pool design and assembly for the linear-on-the-fly tests elaborates more complications in practice when test security is a big concern. Finally, several chapters focus on computerized adaptive testing (CAT) at either item or module levels. CAT is further illustrated as an effective approach to increasing test-takers engagement in testing.

In summary, the book includes both theoretical, methodological, and applied research and practices that serve as the foundation for future development. These chapters provide illustrations of efforts to automate the process of test development. While some of these automation processes have become common practices such as automated test assembly, automated scoring, and computerized adaptive testing, some others such as automated item generation calls for more research and exploration. When new AI methods are emerging and evolving, it is expected that researchers can expand and improve the methods for automating different steps in test development to enhance the automation features and practitioners can adopt quality automation procedures to improve assessment practices.
1 Augmented Intelligence and the Future of Item Development
1(24)
Mark J. Gierl
Hollis Lai
Donna Matovinovic
2 Reconceptualizing Items: From Clones and Automatic Item Generation to Task Model Families
25(26)
Richard Luecht
Matthew Burke
3 Artificial Intelligence for Scoring Oral Reading Fluency
51(26)
Jared Bernstein
Jian Cheng
Jennifer Balogh
Ryan Downey
4 Natural Language Processing and the Literacy Challenge
77(24)
Jill Burstein
5 Practical Considerations for Using AI models in Automated Scoring of Writing
101(14)
Peter W. Foltz
6 Item Pool Design and Assembly: The State of the Art
115(10)
Jeffrey M. Patton
Ray Y. Yan
7 Automated Test Assembly: Case Studies in Classical Test Theory and Item Response Theory
125(16)
Siang Chee Chuah
Donovan Hare
Luz Bay
Thomas Proctor
8 Multistage Testing in Practice
141(20)
Duanli Yan
9 An Intelligent CAT That Can Deal With Disengaged Test Taking
161(14)
Steven L. Wise
10 Differences in the Amount of Adaptation Exhibited by Various Computerized Adaptive Testing Designs
175(14)
Mark D. Reckase
Unhee Ju
Sewon Kim
11 Automatic Item Generation With Machine Learning Techniques: A Pathway to Intelligent Assessments
189(22)
Jaehwa Choi
About the Editors 211