Atjaunināt sīkdatņu piekrišanu

E-grāmata: Applications of Nonstandard Finite Difference Schemes [World Scientific e-book]

Edited by (Clark Atlanta Univ, Usa)
  • Formāts: 264 pages
  • Izdošanas datums: 29-Mar-2000
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-13: 9789812813251
Citas grāmatas par šo tēmu:
  • World Scientific e-book
  • Cena: 116,60 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formāts: 264 pages
  • Izdošanas datums: 29-Mar-2000
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-13: 9789812813251
Citas grāmatas par šo tēmu:
The main purpose of this book is to provide a concise introduction to the methods and philosophy of constructing nonstandard finite difference schemes and illustrate how such techniques can be applied to several important problems. Chapter 1 gives an overview of the subject and summarizes previous work. Chapters 2 and 3 consider in detail the construction and numerical implementation of schemes for physical problems involving convection-diffusion-reaction equations that arise in groundwater pollution and scattering of electromagnetic waves using Maxwell's equations. Chapter 4 examines certain mathematical issues related to the nonstandard discretization of competitive and cooperative models for ecology. Chapter 5 discusses exactness, stability properties, and the symplecticity of various schemes including the conditions for which Runge-Kutta methods are exact. The application chapters illustrate well the power of nonstandard methods. In particular, for the same accuracy as obtained by standard techniques, larger step sizes can be used.This volume will satisfy the needs of scientists, engineers, and mathematicians who wish to know how to construct nonstandard schemes and see how these are applied to obtain numerical solutions of the differential equations which arise in the study of nonlinear dynamical systems modeling important physical phenomena.
Preface v Nonstandard Finite Difference Schemes 1(54) Ronald E. Mickens Introduction 2(3) Exact Schemes 5(14) Nonstandard Schemes 19(4) Applications 23(26) First-Order Scalar ODEs 23(3) A Photoconduction Model 26(3) The Duffing Oscillator 29(2) Mixed Parity Oscillator 31(3) A Cubic Reaction Problem in Neurophysiology 34(1) Time-Independent Schrodinger Equations 35(2) Traveling Wave Solutions 37(4) Linear Advection-Diffusion Equation 41(1) A Combustion Model 42(2) Influence of Spatial Discretizations for PDEs 44(5) Future Directions 49(6) Bibliography 51(4) Nonstandard Methods for Advection-Diffusion-Reaction Equations 55(54) Hristo V. Kojouharov Benito M. Chen Introduction 55(3) Non-Standard Methods in One Dimension 58(11) Advection-Reaction Equations 59(1) Logistic Growth Reaction Terms 59(3) Linear Reaction Terms 62(2) Nonlinear Reaction Terms 64(3) Advection-Diffusion-Reaction Equations 67(2) Error Analysis of the Non-Standard Method 69(15) Advection-Reaction Equations 69(1) Zero Local Time-Truncation Error 70(1) Zero Local Space-Truncation Error 71(1) Interpolation Errors 72(5) Advection-Diffusion-Reaction Equations 77(7) One-Dimensional Numerical Results 84(10) Advection-Reaction Equations 85(5) Advection-Diffusion-Reaction Equations 90(4) Non-Standard Methods in Multiple Dimensions 94(10) Development of the Non-Standard Method 94(4) Error Estimates 98(6) Summary 104(5) Bibliography 106(3) Application of Nonstandard Finite Differences to Solve the Wave Equation and Maxwells Equations 109(46) James B. Cole Introduction 109(2) The One-Dimensional Wave Equation 111(13) Finite-Difference Time-Domain Algorithm 111(4) Algorithmic Error 115(2) Nonstandard Finite Differences 117(3) One-Dimensional Scattering 120(4) The Two- and Three-Dimensional Wave Equation 124(9) Standard FDTD Algorithm 124(1) Generalized Nonstandard Finite Differences -- Two Dimensions 125(5) Generalized Nonstandard Finite Differences in Three Dimensions 130(3) Discretization and Stability 133(6) Discretization 133(1) Stability 133(6) NSFD Solution of Maxwells Equations 139(11) The Standard Yee Algorithm 139(3) Nonstandard Yee Algorithm 142(4) Maxwells Equations in a Conducting Medium 146(3) Electromagnetic Simulations 149(1) Summary 150(1) Conclusion 150(5) Bibliography 152(3) Non-standard Discretization Methods for Some Biological Models 155(26) H. Al-Kahby F. Dannan S. Elaydi Introduction 155(2) Stability of Lotka-Volterra Differental Equations 157(1) Classical Discretization 158(2) Nonstandard Discretization Schemes 160(1) Competitive and Cooperative Discrete Models 161(3) Permanence of Discrete Competitive and Cooperative Systems 164(1) Predator-prey Discrete Models 165(5) Global Stability of Competitive and Cooperative Systems 170(2) Leslie Predatory-prey Model 172(2) Other Nonstandard Numerical Schemes 174(3) A Kolmogorov Model of Cooperative Systems 177(1) Open Problems 178(3) Bibliography 179(2) An Introduction to Numerical Integrators Preserving Physical Properties 181(66) Martin J. Gander Rita Meyer-Spasche Introduction 182(2) Exact Difference Schemes 184(24) Standard Numerical Schemes as Exact Schemes 184(1) First Order Schemes 185(2) Second Order Schemes 187(5) Higher Order Schemes 192(3) Runge-Kutta Schemes 195(4) Functional Fitting RK-Methods 199(4) Schemes for Given Differential Equations 203(1) Exact Schemes for Given Different Equations 203(2) Nonstandard Schemes for Parabolic Equations with Blow-Up Solutions: Le-Roux Schemes 205(3) Dynamics of Difference Schemes 208(21) Continuous Dynamical Systems 208(2) Discrete Dynamical Systems 210(2) Forward Euler Scheme 212(3) Midpoint Euler Scheme 215(4) Linearly Implicit Euler Schemes 219(2) Details of the Dynamics 221(2) Superstability 223(1) The Linearly Implicit Lintrap Scheme 224(2) Existence Intervals 226(1) Adjoint and Self-Adjoint Schemes 227(1) Convergence of the Scheme 228(1) Stability 228(1) Symplectic and Energy-Conserving Schemes 229(14) Canonical Hamiltonian Systems 230(2) Symplectic Euler 232(2) The Lintrap Scheme 234(2) Non-Canonical Hamiltonian Systems 236(2) Lintrap for Lotka-Volterra 238(4) Symplectic Euler for Lotka-Volterra 242(1) Acknowledgement 243(4) Bibliography 244(3) Appendix A Other Relevant References 247(2) List of Contributors 249