Atjaunināt sīkdatņu piekrišanu

E-grāmata: Applied Biofluid Mechanics

  • Formāts: 314 pages
  • Izdošanas datums: 05-Apr-2007
  • Izdevniecība: McGraw-Hill Professional
  • Valoda: eng
  • ISBN-13: 9780071509510
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 121,72 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 314 pages
  • Izdošanas datums: 05-Apr-2007
  • Izdevniecība: McGraw-Hill Professional
  • Valoda: eng
  • ISBN-13: 9780071509510
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Improve Your Grasp of Fluid Mechanics in the Human Circulatory System_and Develop Better Medical Devices





Applied Biofluid Mechanics features a solid grasp of the role of fluid mechanics in the human circulatory system that will help in the research and design of new medical instruments, equipment, and procedures.

Filled with 100 detailed illustrations, the book examines cardiovascular anatomy and physiology, pulmonary anatomy and physiology, hematology, histology and function of blood vessels, heart valve mechanics and prosthetic heart valves, stents, pulsatile flow in large arteries, flow and pressure measurement, modeling, and dimensional analysis.
Preface xiii
Acknowledgments xv
Review of Basic Fluid Mechanics Concepts
1(34)
A Brief History of Biomedical Fluid Mechanics
1(5)
Fluid Characteristics and Viscosity
6(8)
Displacement and velocity
7(1)
Shear stress and viscosity
8(2)
Example problem: shear stress
10(1)
Viscosity
11(2)
Clinical feature: polycythemia
13(1)
Fundamental Method for Measuring Viscosity
14(2)
Example problem: viscosity measurement
16(1)
Introduction to Pipe Flow
16(8)
Reynolds number
17(2)
Example problem: Reynolds number
19(1)
Poiseuille's law
19(4)
Flow rate
23(1)
Bernoulli Equation
24(1)
Conservation of Mass
24(3)
Venturi meter example
26(1)
Fluid Statics
27(2)
Example problem: fluid statics
28(1)
The Womersley Number α: A Frequency Parameter for Pulsatile Flow
29(6)
Example problem: Womersley number
30(1)
Problems
31(2)
Bibliography
33(2)
Cardiovascular Structure and Function
35(42)
Introduction
35(1)
Clinical Features
36(1)
Functional Anatomy
37(1)
The Heart as a Pump
38(1)
Cardiac Muscle
39(4)
Biopotential in myocardium
40(1)
Excitability
41(2)
Automaticity
43(1)
Electrocardiograms
43(8)
Electrocardiogram leads
44(1)
Mean electrical axis
45(2)
Example problem: mean electrical axis
47(1)
Unipolar versus bipolar and augmented leads
48(1)
Electrocardiogram interpretations
49(1)
Clinical feature: near maximal exercise stress test
50(1)
Heart Valves
51(1)
Clinical features
52(1)
Cardiac Cycle
52(8)
Pressure-volume diagrams
55(2)
Changes in contractility
57(1)
Ventricular performance
58(1)
Clinical feature: congestive heart failure
58(1)
Pulsatility index
59(1)
Example problem: pulsatility index
59(1)
Heart Sounds
60(3)
Clinical features
61(1)
Factors influencing flow and pressure
61(2)
Coronary Circulation
63(2)
Control of the coronary circulation
64(1)
Clinical features
65(1)
Microcirculation
65(4)
Capillary structure
65(1)
Capillary wall structure
66(1)
Pressure control in the microvasculature
67(1)
Diffusion in capillaries
68(1)
Venules
68(1)
Lymphatic Circulation
69(8)
Problems
69(6)
Bibliography
75(2)
Pulmonary Anatomy, Pulmonary Physiology, and Respiration
77(34)
Introduction
77(2)
Clinical features: hyperventilation
78(1)
Alveolar Ventilation
79(2)
Tidal volume
79(1)
Residual volume
79(1)
Expiratory reserve volume
80(1)
Inspiratory reserve volume
80(1)
Functional residual capacity
80(1)
Inspiratory capacity
80(1)
Total lung capacity
80(1)
Vital capacity
81(1)
Ventilation-Perfusion Relationships
81(1)
Mechanics of Breathing
81(4)
Muscles of inspiration
82(1)
Muscles of expiration
83(1)
Compliance of the lung and chest wall
83(1)
Elasticity, elastance, and elastic recoil
83(1)
Example problem: compliance
84(1)
Work of Breathing
85(3)
Clinical features: respiratory failure
87(1)
Airway Resistance
88(3)
Example problem: Reynolds number
91(1)
Gas Exchange and Transport
91(5)
Diffusion
92(1)
Diffusing capacity
92(2)
Oxygen dissociation curve
94(1)
Example problem: oxygen content
95(1)
Clinical feature
96(1)
Pulmonary Pathophysiology
96(3)
Bronchitis
96(1)
Emphysema
96(1)
Asthma
97(1)
Pulmonary fibrosis
98(1)
Chronics obstructive pulmonary disease (COPD)
98(1)
Heart disease
98(1)
Comparison of pulmonary pathologies
98(1)
Respiration in Extreme Environments
99(12)
Barometric pressure
100(1)
Partial pressure of oxygen
101(1)
Hyperventilation and the alveolar gas equation
102(1)
Alkalosis
103(1)
Acute mountain sickness
103(1)
High-altitude pulmonary edema
104(1)
High-altitude cerebral edema
104(1)
Acclimatization
104(1)
Drugs stimulating red blood cell production
105(1)
Example problem: alveolar gas equation
106(1)
Review Problems
106(3)
Bibliography
109(2)
Hematology and Blood Rheology
111(30)
Introduction
111(1)
Elements of Blood
111(1)
Blood Characteristics
111(5)
Types of fluids
112(1)
Viscosity of blood
113(1)
Fahræus-Lindqvist effect
114(2)
Einstein's equation
116(1)
Viscosity Measurement
116(5)
Rotating cylinder viscometer
116(2)
Measuring viscosity using Poiseuille's law
118(1)
Viscosity measurement by a cone and plate viscometer
119(2)
Erythrocytes
121(6)
Hemoglobin
123(2)
Clinical features---sickle cell anemia
125(1)
Erythrocyte indices
125(1)
Abnormalities of the blood
126(1)
Clinical feature---thalassemia
127(1)
Leukocytes
127(5)
Neutrophils
128(1)
Lymphocytes
129(2)
Monocytes
131(1)
Eosinophils
131(1)
Basophils
131(1)
Leukemia
131(1)
Thrombocytes
132(1)
Blood Types
132(3)
Rh blood groups
134(1)
M and N blood group system
135(1)
Plasma
135(6)
Plasma viscosity
136(1)
Electrolyte composition of plasma
136(1)
Blood pH
137(1)
Clinical features---acid--base imbalance
137(1)
Review Problems
138(1)
Bibliography
139(2)
Anatomy and Physiology of Blood Vessels
141(24)
Introduction
141(1)
General Structure of Arteries
141(3)
Tunica intima
142(1)
Tunica media
142(1)
Tunica externa
143(1)
Types of Arteries
144(1)
Elastic arteries
144(1)
Muscular arteries
144(1)
Arterioles
144(1)
Mechanics of Arterial Walls
144(3)
Compliance
147(6)
Compliance example
151(1)
Clinical feature---arterial compliance and hypertension
152(1)
Pulse Wave Velocity and the Moens--Korteweg Equation
153(2)
Applications box---fabrication of arterial models
153(1)
Pressure--strain modulus
153(1)
Example problem--modulus of elasticity
154(1)
Vascular Pathologies
155(2)
Atherosclerosis
155(1)
Stenosis
155(1)
Aneurysm
156(1)
Clinical feature---endovascular aneurysm repair
156(1)
Thrombosis
157(1)
Stents
157(2)
Clinical feature---``Stent Wars''
158(1)
Coronary Artery Bypass Grafting
159(6)
Arterial grafts
160(1)
Review Problems
161(1)
Bibliography
162(3)
Mechanics of Heart Valves
165(22)
Introduction
165(1)
Aortic and Pulmonic Valves
165(6)
Clinical feature---percutaneous aortic valve implantation
169(2)
Mitral and Tricuspid Valves
171(1)
Pressure Gradients across a Stenotic Heart Valve
172(6)
The Gorlin equation
173(2)
Example problem---Gorlin equation
175(1)
Energy loss across a stenotic valve
175(3)
Example problem---energy loss method
178(1)
Clinical features
178(1)
Prosthetic Mechanical Valves
178(6)
Clinical feature---performance of the On-X valve
180(1)
Case study---the Bjork-Shiley convexo-concave heart valve
180(4)
Prosthetic Tissue Valves
184(3)
Review Problems
184(1)
Bibliography
185(2)
Pulsatile Flow in Large Arteries
187(42)
Introduction
187(1)
Fluid Kinematics
188(1)
Continuity
189(1)
Complex Numbers
190(2)
Fourier Series Representation
192(6)
Navier--Stokes Equations
198(4)
Pulsatile Flow in Rigid Tubes---Womersley Solution
202(12)
Pulsatile Flow in Rigid Tubes---Fry Solution
214(7)
Instability in Pulsatile Flow
221(8)
Review Problems
222(5)
Bibliography
227(2)
Flow and Pressure Measurement
229(30)
Introduction
229(1)
Indirect Pressure Measurements
229(2)
Indirect pressure gradient measurements using Doppler ultrasound
230(1)
Direct Pressure Measurement
231(18)
Intravascular---strain gauge tipped pressure transducer
231(6)
Extravascular---catheter-transducer measuring system
237(1)
Electrical analog of the catheter measuring system
238(2)
Characteristics for an extravascular pressure measuring system
240(1)
Example problem---characteristics of an extravascular measuring system
241(2)
Case 1: the undamped catheter measurement system
243(1)
Case 2: the undriven, damped catheter measurement system
244(4)
Pop test---measurement of transient step response
248(1)
Flow Measurement
249(6)
Indicator dilution method
249(1)
Fick technique for measuring cardiac output
250(1)
Fick technique example
250(1)
Rapid injection Indicator-dilution method---dye dilution technique
250(1)
Thermodilution
251(1)
Electromagnetic flowmeters
252(1)
Continuous wave ultrasonic flowmeters
253(1)
Example problem---continuous wave Doppler ultrasound
254(1)
Summary and Clinical Applications
255(4)
Review Problems
256(2)
Bibliography
258(1)
Modeling
259(16)
Introduction
259(1)
Theory of Models
260(4)
Dimensional analysis and the Buckingham Pi theorem
260(2)
Synthesizing Pi terms
262(2)
Geometric Similarity
264(1)
Dynamic Similarity
265(1)
Kinematic Similarity
265(1)
Common Dimensionless Parameters in Fluid Mechanics
266(1)
Modeling Example 1---Does the Flea Model the Man?
266(2)
Modeling Example 2
268(1)
Modeling Example 3
269(6)
Review Problems
271(2)
Bibliography
273(2)
Lumped Parameter Mathematical Models
275(24)
Introduction
275(1)
Electrical Analog Model of Flow in a Tube
276(12)
Nodes and the equations at each node
277(1)
Terminal load
278(10)
Summary of the lumped parameter electrical analog model
288(1)
Modeling of Flow through the Mitral Valve
288(8)
Model description
289(3)
Active ventricular relaxation
292(1)
Meaning of convective resistance
292(1)
Variable area mitral valve model description
292(1)
Variable area mitral valve model parameters
293(1)
Solving the system of differential equations
294(1)
Model trials
294(1)
Results
294(2)
Summary
296(3)
Review Problems
297(1)
Bibliography
297(2)
Index 299


Lee Waite, Ph.D., P.E., is Head of the Department of Applied Biology and Biomedical Engineering, and Director of the Guidant/Eli Lilly and Co. Applied Life Sciences Research Center. He is also the author of Biofluid Mechanics in Cardiovascular Systems, published by McGraw-Hill.



Jerry Fine, Ph.D., is Associate Professor of Mechanical Engineering. Before he joined the faculty at Rose, Dr. Fine served as a patrol plane pilot in the U.S. Navy and taught at the U.S. Naval Academy.