Atjaunināt sīkdatņu piekrišanu

Applied Impact Mechanics [Hardback]

  • Formāts: Hardback, 350 pages, height x width x depth: 235x151x27 mm, weight: 692 g
  • Sērija : Ane/Athena Books
  • Izdošanas datums: 30-Jan-2017
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1119241804
  • ISBN-13: 9781119241805
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 103,48 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 350 pages, height x width x depth: 235x151x27 mm, weight: 692 g
  • Sērija : Ane/Athena Books
  • Izdošanas datums: 30-Jan-2017
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1119241804
  • ISBN-13: 9781119241805
Citas grāmatas par šo tēmu:
This book is intended to help the reader understand impact phenomena as a focused application of diverse topics such as rigid body dynamics, structural dynamics, contact and continuum mechanics, shock and vibration, wave propagation and material modelling.  It emphasizes the need for a proper assessment of sophisticated experimental/computational tools promoted widely in contemporary design.  A unique feature of the book is its presentation of several examples and exercises to aid further understanding of the physics and mathematics of impact process from first principles, in a way that is simple to follow.
Preface v
List of Figures
xv
List of Tables
xix
List of Symbols
xxi
Chapter 1 Introduction
1(18)
1.1 General Introduction to Engineering Mechanics
2(1)
1.2 General Introduction to Fracture Mechanics
3(2)
1.3 Impact Mechanics -- Appreciating Impact Problems in Engineering
5(3)
1.4 Historical Background
8(2)
1.5 Percussion, Concussion, Collision and Explosion
10(1)
1.6 Summary
11(8)
Bibliography
12(7)
Chapter 2 Rigid Body Impact Mechanics
19(16)
2.1 Introduction
19(2)
2.2 Impulse -- Momentum Equations
21(1)
2.3 Coefficient of Restitution -- Classical Definitions
21(3)
2.3.1 Kinematic Coefficient of Restitution
22(1)
2.3.2 Measurement of Coefficient of Restitution
22(1)
2.3.3 Relative Assessment of Various Impacts in Sports
23(1)
2.4 Coefficient of Restitution -- Alternate Definition
24(5)
2.4.1 Kinetic Coefficient of Restitution
24(1)
2.4.1.1 Case Study: Rebound of Colliding Vehicles
25(2)
2.4.2 Energy Coefficient of Restitution
27(1)
2.4.2.1 Application in Vehicle Collisions
28(1)
2.5 Oblique Impact -- Role of Friction
29(2)
2.6 Limitations of Rigid Body Impact Mechanics
31(1)
2.7 Summary
31(4)
Exercise Problems
32(2)
Bibliography
34(1)
Chapter 3 One-Dimensional Impact Mechanics of Deformable Bodies
35(20)
3.1 Introduction
35(1)
3.2 Single Degree of Freedom Idealization of Impact Process
36(5)
3.2.1 Governing Equations of Single Degree of Freedom (SDOF) System
37(1)
3.2.2 Forced Vibrations due to Exponentially Decaying Loads
38(3)
3.3 1-D Wave Propagation in Solids Induced by Impact
41(10)
3.3.1 Longitudinal Waves in Thin Rods
42(1)
3.3.1.1 The Governing Equation for Waves in Long Rods
42(4)
3.3.1.2 Free Vibrations in a Finite Rod
46(1)
3.3.2 Flexural Waves in Thin Rods
47(1)
3.3.2.1 The Governing Equation for Flexural Waves in Rods
47(1)
3.3.2.2 Free Vibrations of Finite Beams
48(2)
3.3.3 The D'Alembert's Solution for Wave Equation
50(1)
3.4 Summary
51(4)
Exercise Problems
52(2)
Bibliography
54(1)
Chapter 4 Multi-Dimensional Impact Mechanics of Deformable Bodies
55(24)
4.1 Introduction
55(1)
4.2 Analysis of Stress
56(7)
4.2.1 Stress Components on an Arbitrary Plane
56(1)
4.2.2 Principal Stresses and Stress Invariants
57(1)
4.2.3 Mohr's Circles
58(1)
4.2.4 Octahedral Stresses
58(1)
4.2.5 Decomposition into Hydrostatic and Pure Shear States
59(1)
4.2.6 Equations of Motion of a Body in Cartesian Coordinates
60(1)
4.2.7 Equations of Motion of a Body in Cylindrical Coordinates
61(1)
4.2.8 Equations of Motion of a Body in Spherical Coordinates
62(1)
4.3 Analysis of Strain
63(2)
4.3.1 Deformation in the Neighborhood of a Point
63(1)
4.3.2 Compatibility Equations
64(1)
4.3.3 Strain Deviator
65(1)
4.4 Linearised Stress-Strain Relations
65(2)
4.4.1 Stress-Strain Relations for Isotropic Materials
66(1)
4.5 Waves in Infinite Medium
67(3)
4.5.1 Longitudinal Waves (Primary/Dilatational/Irrotational Waves)
67(1)
4.5.1.1 Longitudinal Waves
68(1)
4.5.1.2 The Governing Equations for Longitudinal Waves
68(1)
4.5.2 Transverse Waves (Secondary/Shear/Distortional/Rotational Wave)
69(1)
4.5.2.1 Transverse Waves
69(1)
4.5.2.2 The Governing Equations for Transverse Waves
70(1)
4.6 Waves in Semi-Infinite Media
70(6)
4.6.1 Surface Waves
71(3)
4.6.2 Symmetric Rayleigh-Lamb Spectrum in Elastic Layer
74(2)
4.7 Summary
76(3)
Exercise Problems
76(2)
Bibliography
78(1)
Chapter 5 Experimental Impact Mechanics
79(54)
5.1 Introduction
80(1)
5.2 Quasi-Static Material Tests
81(6)
5.3 Pendulum Impact Tests
87(3)
5.4 About High Strain Rate Testing of Materials
90(1)
5.5 Split Hopkinson's Pressure Bar Test
91(12)
5.5.1 Historical Background and Significance
91(1)
5.5.2 Improvements in SHPB Test Apparatus
92(1)
5.5.3 Principle of SHPB Test
93(2)
5.5.4 Theory Behind SHPB
95(2)
5.5.5 Design of Pressure Bars for a SHPB Apparatus
97(3)
5.5.6 Applications, Availability and Few Results
100(3)
5.6 Taylor Cylinder Impact Test
103(7)
5.6.1 Methodology
104(3)
5.6.2 Strain Rates
107(1)
5.6.3 Limitations and Improvements
107(2)
5.6.4 Case Study-1: Experiments with a Paraffin Wax
109(1)
5.6.5 Case Study-2: Experiments with Steel Cylinders
109(1)
5.7 Drop Impact Test
110(15)
5.7.1 Drop Specimen Test (DST)
111(2)
5.7.1.1 Few Standards for DST by Free Fall
113(1)
5.7.1.2 Experimental Setup for DST
113(2)
5.7.1.3 DST Procedure
115(1)
5.7.1.4 A Case Study: DST of a helicopter in NASA in a bid to improve safety
116(2)
5.7.2 Drop Weight Test (DWT)
118(1)
5.7.2.1 Experimental Setup for DWT
119(2)
5.7.2.2 Case Study-1: DWT to study fracture process in structural concrete
121(3)
5.7.2.3 Case Study-2: DWT tower for applying both compressive and tensile dynamic loads
124(1)
5.8 Summary
125(8)
Exercise Problems
126(1)
References
127(6)
Chapter 6 Modeling Deformation and Failure Under Impact
133(38)
6.1 Introduction
133(2)
6.2 Equation of State
135(9)
6.2.1 Gruneisen Parameter
135(1)
6.2.2 Shock-Hugoniot Curve
136(1)
6.2.3 Rankine-Hugoniot Conditions
137(2)
6.2.4 Mie-Gruneisen (Shock) Equation of State
139(2)
6.2.4.1 Implementation of Mie-Gruneisen Equation of State
141(1)
6.2.5 Murnaghan Equation of State
142(1)
6.2.6 Linear Equation of State
142(1)
6.2.7 Polynomial Equation of State
143(1)
6.2.8 High Explosive Equation of State
143(1)
6.3 Constitutive Models for Material Deformation and Plasticity
144(11)
6.3.1 Plasticity
145(2)
6.3.2 Plastic Isotropic or Kinematic Hardening Material Model
147(1)
6.3.3 Thermo-Elastic-Plastic Material Model
148(1)
6.3.4 Power-Law Isotropic Plasticity Material Model
148(1)
6.3.5 Johnson-Cook Material Model
149(1)
6.3.5.1 Determination of Parameters in Johnson-Cook Model
150(1)
6.3.6 Zerilli-Armstrong Material Model
151(1)
6.3.6.1 Modified Zerilli-Armstrong Material Model
151(1)
6.3.6.2 Determination of Parameters in Zerilli-Armstrong Model
152(1)
6.3.7 Combined Johnson-Cook and Zerilli-Armstrong Material Model
152(1)
6.3.8 Steinberg-Guinan Material Model
153(1)
6.3.9 Barlat's 3 Parameter Plasticity Material Model
153(1)
6.3.10 Orthotropic Material Model
154(1)
6.3.11 Summary of Material Models
154(1)
6.4 Failure/Damage Models
155(9)
6.4.1 Void Growth and Fracture Strain Model
156(1)
6.4.1.1 Void Growth Model
156(1)
6.4.1.2 Fracture Strain Model
157(1)
6.4.2 Johnson--Cook Failure Model
158(1)
6.4.3 Unified Model of Visco-plasticity and Ductile Damage
159(1)
6.4.4 Johnson-Holmquist Concrete Damage Model
160(1)
6.4.4.1 Determination of Parameters in Johnson-Holmquist Model
161(1)
6.4.5 Chang-Chang Composite Damage Model
161(1)
6.4.6 Orthotropic Damage Model
162(1)
6.4.7 Plastic Strain Limit Damage Model
162(1)
6.4.8 Material Stress/Strain Limit Damage Model
162(1)
6.4.9 Implementation of Damage
163(1)
6.4.9.1 Discrete Technique
163(1)
6.4.9.2 Operator Split Technique
163(1)
6.5 Temperature Rise During Impact
164(1)
6.6 Summary
165(6)
Exercise Problems
166(1)
References
167(4)
Chapter 7 Computational Impact Mechanics
171(50)
7.1 Introduction
171(3)
7.2 Principles of Numerical Formulations
174(15)
7.2.1 Classical Continuum Methods: Lagrangean, Eulerian and Arbitrary Lagrangean-Eulerian
174(1)
7.2.1.1 Lagrangean Formulation
174(2)
7.2.1.2 Eulerian Formulation
176(1)
7.2.1.3 Arbitrary Lagrangean-Eulerian Coupling (ALE-Formulation)
177(2)
7.2.2 Particle Based Methods
179(1)
7.2.2.1 Smooth Particle Hydrodynamics Method
180(3)
7.2.2.2 Discrete Element Method
183(2)
7.2.3 Meshless Methods
185(2)
7.2.4 Hybrid Particle and Mesh based Methods
187(2)
7.3 Numerical Simulation Using Finite Element Methods
189(3)
7.4 Numerical Integration Methods
192(4)
7.4.1 Implicit Integration
192(1)
7.4.2 Explicit Integration
193(1)
7.4.3 Application of Integration Schemes and Material Response
194(2)
7.5 Computational Aspects in Numerical Simulation
196(7)
7.5.1 Hour Glass Deformations and Control
196(1)
7.5.1.1 Hour Glass Deformations
196(1)
7.5.1.2 Hour Glass Control
197(1)
7.5.2 Shockwaves, Numerical Shockwaves and Artificial Viscosity
198(1)
7.5.2.1 Shockwaves
198(1)
7.5.2.2 Numerical Shockwaves
198(1)
7.5.2.3 Artificial Viscosity
199(1)
7.5.3 Acoustic Impedance
200(1)
7.5.4 Adaptive Meshing
200(1)
7.5.5 Contact-Impact Considerations
201(1)
7.5.5.1 Kinematic Constraint Method
201(1)
7.5.5.2 Penalty Method
202(1)
7.5.5.3 Distributed Parameter Method
202(1)
7.5.5.4 Automatic Surface to Surface Contact
202(1)
7.5.5.5 Initial Contact Interpenetrations
203(1)
7.5.5.6 Friction in Sliding Interfaces
203(1)
7.6 Case Studies in Numerical Simulation
203(11)
7.6.1 Case-1: Simulation of Ballistic Impact on a Plate with a Simple Plasticity Model
203(3)
7.6.2 Case-2: Simulation of Plugging Failure with a Unified Material and Damage Model
206(3)
7.6.3 Case-3: Simulation of Ballistic Impact of a Steel Bullet on a GFRP Plate
209(3)
7.6.4 Case-4: Discrete Element Method for Simulation of Ballistic Impact in 1-D Domain
212(2)
7.7 Summary
214(7)
Exercise Problems
216(1)
References
216(5)
Chapter 8 Vehicle Collision
221(48)
8.1 Introduction
221(2)
8.2 Mechanics of Vehicle Collision
223(2)
8.3 Crash Impact Tests for Safety Regulations
225(9)
8.3.1 Crash Impact Tests
227(1)
8.3.1.1 Frontal Crash Impact Test
227(2)
8.3.1.2 Side Crash Impact Test
229(1)
8.3.1.3 Rear Crash Impact Test
230(1)
8.3.1.4 Pedestrian Impact Test
231(1)
8.3.1.5 Roll-over Crash Impact Test
231(1)
8.3.2 Data Acquisition and Filtering in Crash Impact Tests
232(1)
8.3.3 Vehicle Safety Regulations in India
233(1)
8.4 Concepts in Analysis of Vehicle/Occupant Systems
234(19)
8.4.1 Introduction
234(2)
8.4.2 Analysis of Frontal Rigid Barrier Collision (Frontal Impact Crash)
236(1)
8.4.3 Vehicle Response in Frontal Barrier Collision
237(3)
8.4.4 Equivalent Square Wave and Pulse Waveform Efficiency
240(1)
8.4.4.1 Equivalent Square Wave (ESW)
240(1)
8.4.4.2 Pulse Waveform Efficiency (η)
241(1)
8.4.5 Occupant Response in Frontal Barrier Collision
242(1)
8.4.5.1 Occupant Response in a General Braking Vehicle
243(1)
8.4.5.2 Unrestrained Occupant Response in a Braking Vehicle
244(1)
8.4.5.3 Unrestrained Occupant Response in a Crashing Vehicle
245(1)
8.4.5.4 Restrained Occupant Response in a Crashing Vehicle
246(1)
8.4.5.5 Effect of Occupant Restraint in a Crashing Vehicle
246(1)
8.4.6 Guidelines for Design and Evaluation of a Good Occupant Restraint System
247(1)
8.4.7 Side Impact Analysis
248(2)
8.4.8 Compatibility between Restraint System and Vehicle Front Structure
250(3)
8.5 Standard Restraint Systems
253(5)
8.5.1 Airbag Restraint System (ARS)
253(2)
8.5.2 Safety (Seat) Belts
255(1)
8.5.2.1 Case-1: Occupant with a Non-Stretching Seat Belt
255(1)
8.5.2.2 Case-2: Occupant with a Stretchable Seat Belt
255(1)
8.5.2.3 Case-3: Occupant with No Seat Belt
256(1)
8.5.2.4 Response in all Cases
257(1)
8.5.3 Collapsible Steering Columns
257(1)
8.6 Crashworthiness and Crash Energy Management
258(6)
8.6.1 Crashworthiness
258(1)
8.6.2 Crash Energy Management
259(1)
8.6.2.1 Parameters Adopted in Quantifying Crash Energy
260(1)
8.6.2.2 Typical Structural Members for Crash Energy Management
261(3)
8.7 Summary
264(5)
Exercise Problems
265(2)
References
267(2)
Chapter 9 Ballistic Impact
269(44)
9.1 Introduction
269(7)
9.1.1 Classification of Ballistic Impact, Projectile Shape and Target
272(1)
9.1.1.1 Classification of Ballistic Impact
272(1)
9.1.1.2 Classification of Projectile Shape
273(1)
9.1.1.3 Classification of Targets
273(1)
9.1.2 Impact Response of Materials to Ballistic Impact at Different Velocity Regimes
274(2)
9.2 Mechanics of Penetration and Perforation
276(6)
9.2.1 Physics of Impact Phenomena in Penetration and Perforation
276(1)
9.2.2 Elastic, Plastic and Hydrodynamic Limit Velocities and Permanent Deformation
277(1)
9.2.2.1 Elastic Limit Velocity (VEL)
278(1)
9.2.2.2 Plastic Limit Velocity (VPL)
278(1)
9.2.2.3 Hydrodynamic Limit Velocity (VHL)
279(1)
9.2.3 Ballistic Limit Velocity, Impact Regime Phase Diagram and Aerial Density
279(1)
9.2.3.1 Ballistic Limit
280(1)
9.2.3.2 Impact Regime Phase Diagram for Ballistic Limit
281(1)
9.2.3.3 Aerial Density
282(1)
9.3 Failure Modes and Mechanisms in Impacted Targets
282(4)
9.4 Ballistic Impact Models
286(16)
9.4.1 Methods Adopted in Developing Ballistic Impact Models
287(1)
9.4.1.1 Analytical Methods
287(1)
9.4.1.2 Empirical or Quasi-Analytical Methods
287(1)
9.4.1.3 Numerical Methods
288(1)
9.4.2 Select Ballistic Impact Models
288(1)
9.4.2.1 Penetration Models
288(9)
9.4.2.2 Residual Velocity Models
297(3)
9.4.2.3 Models for Fragmentation
300(2)
9.5 Ballistic Testing
302(5)
9.5.1 Different Stages in Ballistic Experiments
302(1)
9.5.2 A Simple Test Setup for Ballistic Impact
302(2)
9.5.3 An Actual Test Setup for Ballistic Impact
304(2)
9.5.4 Developments in Imaging Systems
306(1)
9.5.5 Open Range Test Setup for Ballistic Impact
306(1)
9.6 Summary
307(6)
Exercise Problems
308(2)
References
310(3)
Chapter 10 Concluding Remarks
313(12)
10.1 Introduction
314(1)
10.2 Summary
315(3)
10.3 Future Research Directions for Applied Impact Mechanics
318(3)
10.4 Epilogue
321(4)
Index 325(10)
Colour Plate 335
C. Lakshmana Rao, Professor, Department of Applied Mechanics, IIT, Madras, India. Dr Rao works in the area of impact mechanics, modelling of material response, piezoelectric actuation and control of structural response. V. Narayanamurthy, Scientist, Research Centre Imarat (Defence research), Hyderabad, India. His research interests include theoretical and computational impact mechanics, structural mechanics modeling in hybrid beams, plates and shells, flight structures and mechanisms. K. R. Y. Simha, Professor; IISC, Bangalore, India. He has participated in industrial R&D for automoboile, aerospace, mining and machine tool designers.