Atjaunināt sīkdatņu piekrišanu

Applied Linear Regression for Business Analytics with R: A Practical Guide to Data Science with Case Studies 2023 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 276 pages, height x width: 235x155 mm, 53 Illustrations, color; 33 Illustrations, black and white; XVII, 276 p. 86 illus., 53 illus. in color., 1 Paperback / softback
  • Sērija : International Series in Operations Research & Management Science 337
  • Izdošanas datums: 03-Jun-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 303121482X
  • ISBN-13: 9783031214820
  • Mīkstie vāki
  • Cena: 78,14 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 91,94 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 276 pages, height x width: 235x155 mm, 53 Illustrations, color; 33 Illustrations, black and white; XVII, 276 p. 86 illus., 53 illus. in color., 1 Paperback / softback
  • Sērija : International Series in Operations Research & Management Science 337
  • Izdošanas datums: 03-Jun-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 303121482X
  • ISBN-13: 9783031214820
Applied Linear Regression for Business Analytics with R introduces regression analysis to business students using the R programming language with a focus on illustrating and solving real-time, topical problems.

Applied Linear Regression for Business Analytics with R introduces regression analysis to business students using the R programming language with a focus on illustrating and solving real-time, topical problems. Specifically, this book presents modern and relevant case studies from the business world, along with clear and concise explanations of the theory, intuition, hands-on examples, and the coding required to employ regression modeling. Each chapter includes the mathematical formulation and details of regression analysis and provides in-depth practical analysis using the R programming language.

1. Introduction.-
2. Basic Statistics and Functions using R.-
3.
Regression Fundamentals.-
4. Simple Linear Regression.-
5. Multiple
Regression.-
6. Estimation Intervals and Analysis of Variance.-
7. Predictor
Variable Transformations.-
8. Model Diagnostics.-
9. Variable Selection.
Dr. Daniel McGibney is an Assistant Professor of Professional Practice at the University of Miami Herbert Business School, USA. He currently teaches analytics to both graduate and undergraduate students. Over the years, he has taught many analytics and data science classes, ranging from Basic Statistics to Big Data Analytics and Deep Learning. He has taught Applied Linear Regression Analysis to students pursuing their MSBA, MBA, MST, and MAcc. He also actively oversees and mentors graduate capstone projects in Analytics for MSBA students, collaborating with Deloitte, Visa, Carnival, Citi, Experian, and many other companies. Dr. McGibney formerly served as the program director for the Herbert Business Schools MSBA degree program. He advised students, oversaw admissions, expanded industry partnerships, and advanced the program curriculum during his tenure as program director.