Preface |
|
xiii | |
The Authors |
|
xv | |
|
|
1 | (40) |
|
|
1 | (1) |
|
|
1 | (5) |
|
|
2 | (2) |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
4 | (1) |
|
1.2.6 Results Viewer Window |
|
|
5 | (1) |
|
1.2.7 Options for Displaying Procedure Results |
|
|
5 | (1) |
|
1.2.8 Help and Documentation |
|
|
5 | (1) |
|
|
6 | (5) |
|
|
7 | (1) |
|
1.3.2 Variable Names and Data Set Names |
|
|
8 | (1) |
|
|
8 | (3) |
|
1.4 Reading Data---The Data Step |
|
|
11 | (10) |
|
1.4.1 Creating SAS Data Sets from Raw Data |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
15 | (2) |
|
1.4.4.4 Multiple Lines per Observation |
|
|
17 | (1) |
|
1.4.4.5 Multiple Observations per Line |
|
|
17 | (1) |
|
|
17 | (1) |
|
1.4.5 Reading Data---Proc Import |
|
|
18 | (1) |
|
1.4.6 Reading and Writing Excel Files |
|
|
19 | (1) |
|
1.4.7 Temporary and Permanent SAS Data Sets---SAS Libraries |
|
|
20 | (1) |
|
1.4.8 Reading Data from an Existing SAS Data Set |
|
|
20 | (1) |
|
|
21 | (6) |
|
1.5.1 Creating and Modifying Variables |
|
|
21 | (1) |
|
1.5.1.1 Missing Values in Arithmetic Expressions |
|
|
21 | (3) |
|
|
24 | (1) |
|
1.5.3 Deleting Observations |
|
|
24 | (1) |
|
1.5.4 Subsetting Data Sets |
|
|
24 | (1) |
|
1.5.5 Concatenating and Merging Data Sets |
|
|
25 | (1) |
|
1.5.6 Merging Data Sets---Adding Variables |
|
|
25 | (1) |
|
1.5.7 Operation of the Data Step |
|
|
26 | (1) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
28 | (1) |
|
|
28 | (1) |
|
|
28 | (2) |
|
|
29 | (1) |
|
|
30 | (2) |
|
1.8.1 xy Plots---proc sgplot |
|
|
30 | (1) |
|
|
31 | (1) |
|
|
32 | (1) |
|
1.9 ODS---Output Delivery System |
|
|
32 | (2) |
|
1.9.1 ODS Procedure Output |
|
|
33 | (1) |
|
|
33 | (1) |
|
1.10 Saving Output in SAS Data Sets---ods output |
|
|
34 | (2) |
|
|
34 | (2) |
|
|
36 | (1) |
|
|
36 | (1) |
|
1.11.2 Value Labels---SAS Formats |
|
|
36 | (1) |
|
|
37 | (2) |
|
1.13 Some Tips for Preventing and Correcting Errors |
|
|
39 | (2) |
|
2 Statistics and Measurement in Medicine |
|
|
41 | (32) |
|
|
41 | (1) |
|
2.2 A Brief History of Medical Statistics |
|
|
42 | (4) |
|
2.3 Measurement in Medicine |
|
|
46 | (3) |
|
2.3.1 Scales of Measurement |
|
|
47 | (1) |
|
2.3.1.1 Nominal or Categorical Measurements |
|
|
47 | (1) |
|
2.3.1.2 Ordinal Scale Measurements |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
48 | (1) |
|
2.4 Assessing Bias and Reliability of Measurements |
|
|
49 | (14) |
|
2.4.1 Assessing Reliability and Bias for Binary and Other Categorical Observations |
|
|
50 | (7) |
|
2.4.2 Assessing the Reliability of Quantitative Measurements |
|
|
57 | (6) |
|
|
63 | (9) |
|
|
72 | (1) |
|
|
73 | (36) |
|
|
73 | (1) |
|
|
74 | (14) |
|
3.2.1 Types of Randomisation |
|
|
77 | (3) |
|
3.2.1.1 Blocked Randomisation |
|
|
80 | (2) |
|
3.2.1.2 Stratified Randomisation |
|
|
82 | (3) |
|
3.2.1.3 Minimisation Method |
|
|
85 | (3) |
|
3.3 How Many Participants Do I Need in My Trial? |
|
|
88 | (4) |
|
3.4 Analysis of Data from Clinical Trials |
|
|
92 | (15) |
|
3.4.1 p-Values and Confidence Intervals |
|
|
92 | (2) |
|
3.4.2 Some Examples of Analysis of Data from Clinical Trials Using Familiar Statistical Methods |
|
|
94 | (13) |
|
|
107 | (2) |
|
|
109 | (26) |
|
|
109 | (1) |
|
4.2 Types of Epidemiological Study |
|
|
109 | (5) |
|
|
110 | (1) |
|
4.2.2 Case-Control Studies |
|
|
111 | (1) |
|
|
112 | (2) |
|
4.3 Relative Risk and Odds Ratios |
|
|
114 | (2) |
|
4.4 Sample Size Estimation for Epidemiologic Studies |
|
|
116 | (3) |
|
4.4.1 Sample Size Estimation for Case-Control Studies |
|
|
116 | (2) |
|
4.4.2 Sample Size Estimation for Cohort Studies |
|
|
118 | (1) |
|
4.5 Simple Analyses for Data from Observational Studies |
|
|
119 | (13) |
|
4.5.1 Chi-Squared Test for Association |
|
|
119 | (1) |
|
4.5.2 Finding a Confidence Interval for the Relative Risk and the Odds Ratio |
|
|
120 | (1) |
|
4.5.3 Applying SAS to Analyse Examples of Epidemiological Data |
|
|
121 | (4) |
|
|
125 | (3) |
|
4.5.5 Matched Case-Control Data |
|
|
128 | (1) |
|
4.5.6 Stratified 2x2 Tables |
|
|
129 | (3) |
|
|
132 | (3) |
|
|
135 | (22) |
|
|
135 | (3) |
|
|
138 | (2) |
|
|
140 | (1) |
|
5.4 Statistics of Meta-Analysis |
|
|
141 | (3) |
|
5.4.1 Fixed-Effects Model |
|
|
143 | (1) |
|
5.4.2 Random-Effects Model |
|
|
143 | (1) |
|
5.5 An Example of the Application of Meta-Analysis |
|
|
144 | (6) |
|
5.6 Meta-Analysis on Sparse Data |
|
|
150 | (2) |
|
|
152 | (3) |
|
|
155 | (2) |
|
6 Analysis of Variance and Covariance |
|
|
157 | (30) |
|
|
157 | (1) |
|
6.2 A Simple Example of One-Way Analysis of Variance |
|
|
157 | (5) |
|
6.2.1 One-Way Analysis of Variance Model |
|
|
158 | (1) |
|
6.2.2 Applying the One-Way Analysis of Variance Model to Sickle Cell Disease Data |
|
|
159 | (3) |
|
6.3 Multiple Comparison Procedures |
|
|
162 | (3) |
|
6.3.1 Planned Comparisons |
|
|
162 | (2) |
|
6.3.2 Post Hoc Comparisons |
|
|
164 | (1) |
|
6.4 A Factorial Experiment |
|
|
165 | (7) |
|
6.4.1 Model for Three-Factor Design |
|
|
170 | (2) |
|
|
172 | (6) |
|
6.5.1 Type I Sums of Squares |
|
|
174 | (1) |
|
6.5.2 Type II Sums of Squares |
|
|
174 | (1) |
|
6.5.3 Type III Sums of Squares |
|
|
175 | (1) |
|
6.5.4 Analysis of Antipyrine Data |
|
|
176 | (2) |
|
6.6 Nonparametric Analysis of Variance |
|
|
178 | (3) |
|
6.6.1 Kruskal--Wallis Distribution-Free Test for One-Way Analysis of Variance |
|
|
179 | (1) |
|
6.6.2 Applying the Kruskal--Wallis Test |
|
|
180 | (1) |
|
6.7 Analysis of Covariance |
|
|
181 | (5) |
|
|
186 | (1) |
|
7 Scatter Plots, Correlation, Simple Regression, and Smoothing |
|
|
187 | (32) |
|
|
187 | (1) |
|
7.2 Scatter Plot and Correlation Coefficient |
|
|
187 | (6) |
|
7.3 Simple Linear Regression and Locally Weighted Regression |
|
|
193 | (10) |
|
7.4 Locally Weighted Regression |
|
|
203 | (2) |
|
7.5 Aspect Ratio of a Scatter Plot |
|
|
205 | (4) |
|
7.6 Estimating Bivariate Densities |
|
|
209 | (4) |
|
7.7 Scatter Plot Matrices |
|
|
213 | (3) |
|
|
216 | (3) |
|
8 Multiple Linear Regression |
|
|
219 | (36) |
|
|
219 | (1) |
|
8.2 Multiple Linear Regression Model |
|
|
219 | (3) |
|
8.3 Some Examples of the Application of the Multiple Linear Regression Model |
|
|
222 | (13) |
|
8.3.1 Effect of the Amount of Anaesthetic Agent Administered during an Operation |
|
|
222 | (2) |
|
8.3.2 Mortality and Water Hardness |
|
|
224 | (6) |
|
8.3.3 Weight and Physical Measurements in Men |
|
|
230 | (5) |
|
8.4 Identifying a Parsimonious Model |
|
|
235 | (10) |
|
8.4.1 All Possible Subsets Regression |
|
|
235 | (1) |
|
|
236 | (9) |
|
8.5 Checking Model Assumptions: Residuals and Other Regression Diagnostics |
|
|
245 | (4) |
|
|
249 | (4) |
|
|
253 | (2) |
|
|
255 | (30) |
|
|
255 | (1) |
|
|
255 | (3) |
|
9.3 Two Examples of the Application of Logistic Regression |
|
|
258 | (16) |
|
9.3.1 Psychiatric `Caseness' |
|
|
258 | (10) |
|
9.3.2 Birth Weight of Babies |
|
|
268 | (6) |
|
9.4 Diagnosing a Logistic Regression Model |
|
|
274 | (1) |
|
9.5 Logistic Regression for 1:1 Matched Studies |
|
|
275 | (6) |
|
|
281 | (2) |
|
|
283 | (2) |
|
10 Generalised Linear Model |
|
|
285 | (18) |
|
|
285 | (1) |
|
10.2 Generalised Linear Models |
|
|
285 | (2) |
|
10.3 Applying the Generalised Linear Model |
|
|
287 | (11) |
|
10.3.1 Poisson Regression |
|
|
288 | (8) |
|
10.3.2 Regression with Gamma Errors |
|
|
296 | (2) |
|
|
298 | (2) |
|
|
300 | (2) |
|
|
302 | (1) |
|
11 Generalised Additive Models |
|
|
303 | (22) |
|
|
303 | (1) |
|
11.2 Scatter Plot Smoothers |
|
|
304 | (8) |
|
11.3 Additive and Generalised Additive Models |
|
|
312 | (1) |
|
11.4 Examples of the Application of GAMs |
|
|
313 | (11) |
|
|
324 | (1) |
|
12 Analysis of Longitudinal Data I |
|
|
325 | (24) |
|
|
325 | (1) |
|
12.2 Graphical Displays of Longitudinal Data |
|
|
325 | (8) |
|
12.3 Summary Measure Analysis of Longitudinal Data |
|
|
333 | (7) |
|
12.3.1 Choosing Summary Measures |
|
|
333 | (1) |
|
12.3.2 Applying the Summary Measure Approach |
|
|
334 | (1) |
|
12.3.3 Incorporating Pretreatment Outcome Values into the Summary Measure Approach |
|
|
335 | (2) |
|
12.3.4 Dealing with Missing Values When Using the Summary Measure Approach |
|
|
337 | (3) |
|
12.4 Summary Measure Approach for Binary Responses |
|
|
340 | (7) |
|
|
347 | (2) |
|
13 Analysis of Longitudinal Data II: Linear Mixed-Effects Models for Normal Response Variables |
|
|
349 | (28) |
|
|
349 | (1) |
|
13.2 Linear Mixed-Effects Models for Repeated Measures Data |
|
|
350 | (20) |
|
13.2.1 Random Intercept and Random Intercept and Slope Models |
|
|
351 | (2) |
|
13.2.2 Applying the Random Intercept and Random Intercept and Slope Models |
|
|
353 | (17) |
|
13.3 Dropouts in Longitudinal Data |
|
|
370 | (5) |
|
|
375 | (2) |
|
14 Analysis of Longitudinal Data III: Non-Normal Responses |
|
|
377 | (22) |
|
|
377 | (1) |
|
14.2 Marginal Models and Conditional Models |
|
|
378 | (5) |
|
|
378 | (3) |
|
14.2.2 Conditional Models |
|
|
381 | (2) |
|
14.3 Analysis of the Respiratory Data |
|
|
383 | (8) |
|
|
383 | (5) |
|
14.3.2 Generalised Linear Mixed-Effects Models |
|
|
388 | (3) |
|
14.4 Analysis of Epilepsy Data |
|
|
391 | (7) |
|
|
392 | (2) |
|
14.4.2 Generalised Linear Mixed-Effects Models |
|
|
394 | (4) |
|
|
398 | (1) |
|
|
399 | (22) |
|
|
399 | (1) |
|
15.2 Survivor Function and the Hazard Function |
|
|
400 | (10) |
|
|
400 | (5) |
|
|
405 | (5) |
|
15.3 Comparing Groups of Survival Times |
|
|
410 | (7) |
|
|
412 | (3) |
|
|
415 | (2) |
|
15.4 Sample Size Estimation |
|
|
417 | (2) |
|
|
419 | (2) |
|
16 Cox's Proportional Hazards Models for Survival Data |
|
|
421 | (38) |
|
|
421 | (1) |
|
16.2 Modelling the Hazard Function: Cox's Regression |
|
|
421 | (24) |
|
16.2.1 Examples of Cox's Regression |
|
|
424 | (4) |
|
16.2.2 Estimating the Baseline Hazard Function |
|
|
428 | (10) |
|
16.2.3 Checking Assumptions in Cox's Regression |
|
|
438 | (4) |
|
16.2.4 Stratified Cox's Regression |
|
|
442 | (3) |
|
16.3 Time-Varying Covariates |
|
|
445 | (7) |
|
16.4 Random-Effects Models for Survival Data |
|
|
452 | (5) |
|
|
457 | (2) |
|
|
459 | (24) |
|
|
459 | (1) |
|
|
460 | (3) |
|
17.3 Markov Chain Monte Carlo |
|
|
463 | (1) |
|
|
464 | (1) |
|
17.5 Model Selection When Using a Bayesian Approach |
|
|
465 | (1) |
|
17.6 Some Examples of the Application of Bayesian Statistics |
|
|
465 | (16) |
|
17.6.1 Psychiatric `Caseness' |
|
|
465 | (9) |
|
17.6.2 Cardiac Surgery in Babies |
|
|
474 | (7) |
|
|
481 | (2) |
|
|
483 | (26) |
|
|
483 | (1) |
|
18.2 Patterns of Missing Data |
|
|
484 | (1) |
|
18.3 Missing Data Mechanisms |
|
|
484 | (2) |
|
18.4 Exploring Missingness |
|
|
486 | (7) |
|
18.5 Dealing with Missing Values |
|
|
493 | (1) |
|
18.6 Imputing Missing Values |
|
|
494 | (2) |
|
18.7 Analysing Multiply Imputed Data |
|
|
496 | (1) |
|
18.8 Some Examples of the Application of Multiple Imputation |
|
|
497 | (10) |
|
18.8.1 Air Pollution in US Cities |
|
|
497 | (5) |
|
18.8.2 Growth of Danish Boys |
|
|
502 | (5) |
|
|
507 | (2) |
References |
|
509 | (10) |
Index |
|
519 | |