|
|
xv | |
|
|
xvii | |
Preface |
|
xix | |
|
1 Missing Data Concepts And Motivating Examples |
|
|
1 | (14) |
|
1.1 Overview of the Missing Data Problem |
|
|
1 | (1) |
|
1.2 Patterns and Mechanisms of Missing Data |
|
|
2 | (5) |
|
1.2.1 Missing Data Patterns |
|
|
3 | (2) |
|
1.2.2 Missing Data Mechanisms |
|
|
5 | (2) |
|
|
7 | (8) |
|
1.3.1 Improving Mood and Promoting Access to Collaborative Treatment (IMPACT) Study |
|
|
9 | (1) |
|
1.3.2 National Alzheimer's Coordinating Center Minimum Data Set |
|
|
10 | (1) |
|
1.3.3 National Alzheimer's Coordinating Center Uniform Data Set |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.3.5 Randomized Trial on Vitamin A Supplement |
|
|
12 | (1) |
|
1.3.6 Randomized Trial on Effectiveness of Flu Shot |
|
|
12 | (3) |
|
2 Overview Of Methods For Dealing With Missing Data |
|
|
15 | (10) |
|
2.1 Methods That Remove Observations |
|
|
15 | (2) |
|
2.1.1 Complete-Case Methods |
|
|
16 | (1) |
|
2.1.2 Weighted Complete-Case Methods |
|
|
16 | (1) |
|
2.1.3 Removing Variables with Large Amounts of Missing Values |
|
|
17 | (1) |
|
2.2 Methods That Utilize All Available Data |
|
|
17 | (2) |
|
|
18 | (1) |
|
2.3 Methods That Impute Missing Values |
|
|
19 | (5) |
|
2.3.1 Single Imputation Methods |
|
|
19 | (2) |
|
2.3.2 Multiple Imputation |
|
|
21 | (3) |
|
|
24 | (1) |
|
3 Design Considerations In The Presence Of Missing Data |
|
|
25 | (6) |
|
3.1 Design Factors Related to Missing Data |
|
|
25 | (2) |
|
3.2 Strategies for Limiting Missing Data in the Design of Clinical Trials |
|
|
27 | (1) |
|
3.3 Strategies for Limiting Missing Data in the Conduct of Clinical Trials |
|
|
28 | (1) |
|
3.4 Minimize the Impact of Missing Data |
|
|
29 | (2) |
|
4 Cross-Sectional Data Methods |
|
|
31 | (38) |
|
4.1 Overview of General Methods |
|
|
31 | (1) |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
32 | (1) |
|
4.3 Maximum Likelihood Approach |
|
|
32 | (8) |
|
4.3.1 EM Algorithm for Linear Regression with a Missing Continuous Covariate |
|
|
34 | (2) |
|
4.3.2 EM Algorithm for Linear Regression with Missing Discrete Covariate |
|
|
36 | (2) |
|
4.3.3 EM Algorithm for Logistic Regression with Missing Binary Outcome |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
40 | (7) |
|
|
40 | (1) |
|
4.4.2 Joint Model and Ignorable Missingness |
|
|
41 | (2) |
|
4.4.3 Bayesian Computation for Missing Data |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
45 | (2) |
|
|
47 | (7) |
|
|
47 | (2) |
|
4.5.2 Some General Guidelines on Imputation Models and Analysis Models |
|
|
49 | (1) |
|
4.5.3 Theoretical Justification for the MI Method |
|
|
50 | (1) |
|
4.5.4 MI When θ Is k-Dimensional |
|
|
51 | (2) |
|
|
53 | (1) |
|
|
53 | (1) |
|
4.6 Imputing Estimating Equations |
|
|
54 | (1) |
|
4.7 Inverse Probability Weighting |
|
|
55 | (1) |
|
|
55 | (1) |
|
|
56 | (1) |
|
4.8 Doubly Robust Estimators |
|
|
56 | (4) |
|
|
56 | (1) |
|
4.8.2 Variance Estimation |
|
|
57 | (2) |
|
|
59 | (1) |
|
4.9 Code Used in This Chapter |
|
|
60 | (9) |
|
4.9.1 Code Used in Section 4.3.4 |
|
|
60 | (2) |
|
4.9.2 Code Used in Section 4.3.5 |
|
|
62 | (1) |
|
4.9.3 Code Used in Section 4.4.4 |
|
|
63 | (1) |
|
4.9.4 Code Used in Section 4.4.5 |
|
|
64 | (1) |
|
4.9.5 Code Used in Section 4.4.6 |
|
|
65 | (1) |
|
4.9.6 Code Used in Section 4.5.5 |
|
|
66 | (1) |
|
4.9.7 Code Used in Section 4.5.6 |
|
|
66 | (1) |
|
4.9.8 Code Used in Section 4.7.2 |
|
|
67 | (2) |
|
5 Longitudinal Data Methods |
|
|
69 | (52) |
|
|
69 | (1) |
|
|
70 | (3) |
|
|
70 | (1) |
|
|
71 | (2) |
|
5.3 Longitudinal Regression Models for Complete Data |
|
|
73 | (9) |
|
5.3.1 Linear Mixed Models for Continuous Longitudinal Data |
|
|
73 | (4) |
|
5.3.2 Generalized Estimating Equations |
|
|
77 | (2) |
|
5.3.3 Generalized Linear Mixed Models |
|
|
79 | (2) |
|
5.3.4 Time-Dependent Covariates |
|
|
81 | (1) |
|
5.4 Missing Data Settings and Simple Methods |
|
|
82 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
|
83 | (3) |
|
5.5.1 Example: IMPACT Study |
|
|
84 | (2) |
|
5.6 Inverse Probability Weighted GEE with MAR Dropout |
|
|
86 | (5) |
|
5.6.1 Modeling the Selection Probability |
|
|
86 | (1) |
|
5.6.2 IPWGEE1 and IPWGEE2 |
|
|
87 | (2) |
|
|
89 | (1) |
|
5.6.4 Example: IMPACT Study |
|
|
90 | (1) |
|
5.7 Extension to Nonmonotone Missingness |
|
|
91 | (1) |
|
|
91 | (8) |
|
5.8.1 Joint Imputation Model |
|
|
92 | (1) |
|
5.8.2 Imputation by Chained Equations |
|
|
93 | (1) |
|
5.8.3 Example: NACC UDS Data |
|
|
94 | (2) |
|
5.8.4 Example: IMPACT Study |
|
|
96 | (3) |
|
|
99 | (2) |
|
|
101 | (20) |
|
5.10.1 Imputing Estimating Equations |
|
|
101 | (2) |
|
5.10.2 Doubly Robust Estimation |
|
|
103 | (1) |
|
5.10.3 Missing Outcome and Covariates |
|
|
104 | (5) |
|
Appendix 5.A Technical Details of the Approximation Methods for GLMM and Computer Code for the Examples |
|
|
109 | (1) |
|
|
109 | (1) |
|
5.A.2 Laplace Approximation |
|
|
110 | (1) |
|
5.A.3 Gaussian Quadrature |
|
|
111 | (1) |
|
5.A.4 Code for This Chapter |
|
|
111 | (10) |
|
6 Survival Analysis Under Ignorable Missingness |
|
|
121 | (26) |
|
|
121 | (1) |
|
|
122 | (3) |
|
6.2.1 Review of the Cox Model with Completely Observed Covariates |
|
|
122 | (2) |
|
|
124 | (1) |
|
6.3 Enhanced Complete-Case Analysis |
|
|
125 | (2) |
|
|
127 | (9) |
|
6.4.1 Simple Weighted Estimations |
|
|
127 | (4) |
|
6.4.2 Augmented Weighted Estimation |
|
|
131 | (3) |
|
6.4.3 Reweighting Estimators |
|
|
134 | (2) |
|
|
136 | (3) |
|
6.5.1 Imputation by Conditional Expectations |
|
|
136 | (1) |
|
6.5.2 Multiple Imputation |
|
|
137 | (2) |
|
6.6 Nonparametric Maximum Likelihood Estimation |
|
|
139 | (1) |
|
|
140 | (2) |
|
6.8 Data Example: Pathways Study |
|
|
142 | (2) |
|
|
144 | (3) |
|
7 Nonignorable Missingness |
|
|
147 | (38) |
|
|
147 | (2) |
|
7.2 Cross-Sectional Data: Selection Model |
|
|
149 | (1) |
|
|
149 | (1) |
|
|
150 | (1) |
|
7.3 Longitudinal Data with Dropout |
|
|
150 | (11) |
|
|
150 | (1) |
|
|
151 | (1) |
|
7.3.3 Pattern Mixture Model |
|
|
151 | (4) |
|
|
155 | (2) |
|
7.3.5 Shared Random Effects Model |
|
|
157 | (2) |
|
7.3.6 Mixed Effects Hybrid Model |
|
|
159 | (1) |
|
7.3.7 Comparison of Likelihood-Based Methods |
|
|
160 | (1) |
|
7.4 Bayesian Analysis for Generalized Linear Models with Nonignorably Missing Covariates |
|
|
161 | (4) |
|
7.4.1 Generalized Linear Models |
|
|
162 | (1) |
|
7.4.2 Modeling the Covariate Distribution |
|
|
163 | (1) |
|
7.4.3 Modeling the Missing Data Mechanism |
|
|
163 | (1) |
|
7.4.4 Prior Distributions |
|
|
164 | (1) |
|
7.4.5 Posterior Computation |
|
|
165 | (1) |
|
|
165 | (5) |
|
7.5.1 Proper Multiple Imputation by Bayesian Analysis |
|
|
166 | (1) |
|
7.5.2 Approximate Bayesian Bootstrap Hot Deck Imputation |
|
|
167 | (3) |
|
7.6 Inverse Probability Weighted Methods |
|
|
170 | (15) |
|
7.6.1 Semiparametric Regression for Repeated Outcomes |
|
|
170 | (4) |
|
7.6.2 Estimation of Marginal Mean of an Outcome from Longitudinal Data |
|
|
174 | (11) |
|
8 Analysis Of Randomized Clinical Trials With Noncompliance |
|
|
185 | (30) |
|
|
185 | (1) |
|
|
186 | (2) |
|
8.2.1 Randomized Trial on Vitamin A Supplement |
|
|
186 | (1) |
|
8.2.2 Randomized Trial on Effectiveness of Flu Shot |
|
|
187 | (1) |
|
8.3 Some Common but Naive Methods |
|
|
188 | (1) |
|
8.4 Notations, Assumptions, and Causal Definitions |
|
|
189 | (3) |
|
8.5 Method of Instrumental Variables |
|
|
192 | (2) |
|
|
194 | (3) |
|
8.7 Maximum Likelihood and Bayesian Methods |
|
|
197 | (5) |
|
8.8 Noncompliance and Missing Outcome Data |
|
|
202 | (9) |
|
8.9 Analysis of the Two Examples |
|
|
211 | (1) |
|
8.9.1 Analysis of Vitamin A Supplement Example |
|
|
211 | (1) |
|
|
212 | (1) |
|
8.10 Other Methods for Dealing with Both Noncompliance and Missing Data |
|
|
212 | (3) |
|
Appendix 8.A Multivariate Delta Method |
|
|
213 | (2) |
Bibliography |
|
215 | (10) |
Index |
|
225 | |