Atjaunināt sīkdatņu piekrišanu

E-grāmata: Applied Numerical Methods for Partial Differential Equations

  • Formāts: EPUB+DRM
  • Sērija : Texts in Applied Mathematics 78
  • Izdošanas datums: 21-Oct-2024
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031696305
  • Formāts - EPUB+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Texts in Applied Mathematics 78
  • Izdošanas datums: 21-Oct-2024
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031696305

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The aim of this book is to quickly elevate students to a proficiency level where they can solve linear and nonlinear partial differential equations using state-of-the-art numerical methods. It covers numerous topics typically absent in introductory texts on ODEs and PDEs, including:









Computing solutions to chaotic dynamical systems with TRBDF2 Simulating the nonlinear diffusion equation with TRBDF2 Applying Newtons method and GMRES to the nonlinear Laplace equation Analyzing gas dynamics with WENO3 (1D Riemann problems and 2D supersonic jets) Modeling the drift-diffusion equations with TRBDF2 and PCG Solving the classical hydrodynamic model (electro-gas dynamics) with WENO3 and TRBDF2





The book features 34 original MATLAB programs illustrating each numerical method and includes 93 problems that confirm results discussed in the text and explore new directions. Additionally, it suggests eight semester-long projects.





 





This comprehensive text can serve as the basis for a one-semester graduate course on the numerical solution of partial differential equations, or, with some advanced material omitted, for a one-semester junior/senior or graduate course on the numerical solution of ordinary and partial differential equations. The topics and programs will be of interest to applied mathematicians, engineers, physicists, biologists, chemists, and more.





 
1 Overview.- 2 Consistency, Stability, Convergence.- 3 Numerical Methods
for ODE IVPs.- 4 Numerical Methods for ODE BVPs.- 5 Overview of PDEs.-
6 Numerical Methods for Parabolic PDEs.- 7 Numerical Methods for Elliptic
PDEs.- 8 Numerical Methods for Hyperbolic PDEs.- 9 Numerical Methods for
Mixed Type PDEs.- A Useful Mathematical Formulas.- B Norms and Condition
Number.- References.- Index .
Carl Gardner is an Emeritus Professor of Mathematics at Arizona State University, where he taught and did research in Computational Mathematics for 30 years.  Previously he held positions at Bowdoin College, NYU, and Duke University. Professor Gardner's research focuses on computational and theoretical fluid dynamics and the numerical solution of nonlinear partial differential equations.  His primary application areas are charge transport in quantum semiconductor devices, ion transport in biological cells (modeling ionic channels as well as synapses), and supersonic flows in astrophysical jets (modeling interactions of jets with their environments and star formation).  These problems are governed by coupled systems of nonlinear partial differential equations, and exhibit complex fluid dynamical phenomena involving nonlinear wave interactions.