Atjaunināt sīkdatņu piekrišanu

E-grāmata: Applied Statistics for Social and Management Sciences

  • Formāts: PDF+DRM
  • Izdošanas datums: 29-Feb-2016
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789811004018
  • Formāts - PDF+DRM
  • Cena: 59,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 29-Feb-2016
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789811004018

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book addresses the application of statistical techniques and methods across a wide range of disciplines. While its main emphasis is on the application of statistical methods, theoretical aspects are also provided as fundamental background information. The book also provides a systematic interpretation of results often discovered in general descriptions of methods and techniques such as linear and non-linear regression. SPSS is also used in all the application aspects. The presentation of data in the form of tables and graphs throughout the book not only guides users but also serves the primary part of the statistical application which assist readers in interpreting important features.  A consistent presentation and analysis of statistical data is also provided throughout the text.  Academic researchers, practitioners, and other users who deal with statistical data, will benefit from readingApplied Statistics for Social and Management Sciences.     

Recenzijas

This is a traditional textbook in statistics written for students in management and social sciences. It covers a variety of introductory topics in statistics. Each chapter includes a number of examples, and exercises carefully selected from the fields of management and social sciences. It is a good source for a one-semester statistics course in the areas of management and social sciences. (Morteza Marzjarani, Technometrics, Vol. 59 (2), April, 2017)

1 Basics
1(10)
1.1 History
1(1)
1.2 Statistics
2(1)
1.3 Contents of Statistics
2(1)
1.4 Data
3(2)
1.5 Level of Measurement
5(1)
1.6 Variable
6(2)
1.7 Notation
8(3)
2 Presentation of Statistical Data
11(18)
2.1 Tabular Presentation
11(6)
2.2 Graphical Presentation
17(12)
2.2.1 Bar Charts
17(1)
2.2.2 Pie Charts
17(2)
2.2.3 Histogram
19(1)
2.2.4 Frequency Polygon
19(1)
2.2.5 Pareto Chart
19(4)
2.2.6 Line Diagram
23(1)
2.2.7 Frequency Curve
23(4)
References
27(2)
3 Descriptive Statistics
29(30)
3.1 Central Tendency
30(13)
3.1.1 Mean
30(8)
3.1.2 Median
38(2)
3.1.3 Mode
40(2)
3.1.4 Comparison of Mean, Median, and Mode
42(1)
3.2 Measures of Dispersion
43(16)
3.2.1 Range
44(1)
3.2.2 Interquartile Range (IQR)
44(3)
3.2.3 Mean Deviation
47(1)
3.2.4 Variance
47(1)
3.2.5 Standard Deviation
48(3)
3.2.6 Coefficient of Variation
51(1)
3.2.7 Stem-and-Leaf Diagram
51(3)
3.2.8 Other Measures of Dispersion
54(4)
Reference
58(1)
4 Probability Theory
59(10)
4.1 Probability Definition
60(1)
4.2 Two Approaches in Calculating Probability
60(1)
4.3 Axioms of Probability
61(1)
4.4 Probability in Mutually Exclusive Events
61(1)
4.5 Probability in Independent Events
62(1)
4.6 Probability in Dependent Events (Conditional/Unconditional Probability)
63(1)
4.7 Probability in Non-mutually Exclusive Events
63(1)
4.8 Probability and Number of Possible Samples
64(5)
4.8.1 Sampling with Replacement
64(1)
4.8.2 Sampling Without Replacement (Order Important)
64(1)
4.8.3 Sampling Without Replacement (Order Irrelevant)
65(4)
5 Probability Distributions
69(32)
5.1 Discrete Probability Distribution
70(8)
5.1.1 The Binomial Distribution
70(2)
5.1.2 Multinomial Probability Distribution
72(2)
5.1.3 Hypergeometric Distribution
74(2)
5.1.4 Poisson Distribution
76(2)
5.1.5 Important Features
78(1)
5.2 Continuous Probability Distribution
78(1)
5.3 The Normal Distribution
78(4)
5.3.1 Properties/Characteristics of Normal Distribution
79(1)
5.3.2 Some Examples
80(2)
5.4 The t Distribution
82(2)
5.5 The F Distribution
84(2)
5.6 The Chi-Square Distribution
86(3)
5.7 Joint Probability Distribution
89(2)
5.7.1 Discrete Joint Probability Distribution
89(1)
5.7.2 Continuous Joint Probability Distribution
90(1)
5.8 Data Fitting to Probability Distribution
91(10)
6 Statistical Inference
101(26)
6.1 Parameter and Statistics
101(1)
6.2 Estimation
102(1)
6.3 Properties of Estimators
102(2)
6.3.1 Unbiasedness
103(1)
6.3.2 Efficiency
103(1)
6.3.3 Sufficiency
103(1)
6.3.4 Consistency
104(1)
6.4 Central Limit Theorem
104(1)
6.5 Some Examples in Estimation
105(1)
6.6 Point Estimation
106(1)
6.7 Interval Estimation/Confidence Interval of the Mean of a Single Population
107(3)
6.8 Confidence Interval of the Difference of Means of Two Normal Populations
110(2)
6.9 Confidence Interval of the Variance of a Normal Population
112(1)
6.10 Confidence Interval of a Population Proportion
113(1)
6.11 Confidence Interval of the Difference of Two Population Proportions
114(1)
6.12 Finite Population Correction Factor
115(12)
7 Hypothesis Testing
127(44)
7.1 Introduction
127(4)
7.2 Test Procedure
131(2)
7.3 Hypothesis Testing---One Population Mean (Variance Known)
133(2)
7.3.1 One-Tail Test
133(2)
7.3.2 Two-Tail Test
135(1)
7.4 Hypothesis Testing---One Population Mean (Variance Unknown---Large Sample)
135(2)
7.5 Hypothesis Testing---Equality of Two Population Means (Variance Known)
137(4)
7.5.1 One-Tail Test
137(2)
7.5.2 Two-Tail Test
139(2)
7.6 Hypothesis Testing---One Population Mean (Variance Unknown)
141(3)
7.6.1 One-Tail Test
141(2)
7.6.2 Two-Tail Test
143(1)
7.7 Hypothesis Testing---Equality of Two Population Means (Variance Unknown---Small Sample)
144(5)
7.7.1 Situation 1: σ21 = σ22 =σ2
145(2)
7.7.2 Situation 2: σ21 ≠ σ22
147(2)
7.8 Testing of Hypothesis---Population Proportion
149(8)
7.8.1 One Population Proportion
150(3)
7.8.2 Equality of Two Population Proportions
153(4)
7.9 Power of Hypothesis Testing
157(14)
8 The Chi-Square Test
171(12)
8.1 Goodness-of-Fit Test
171(3)
8.2 Test of Independence
174(9)
9 Nonparametric Test
183(20)
9.1 The Sign Test
183(6)
9.2 The Rank Test
189(7)
9.2.1 The Wilcoxon Rank-Sum Test
190(4)
9.2.2 The Spearman Rank Correlation
194(2)
9.3 Nonparametric Method in Analysis of Variance
196(7)
Reference
201(2)
10 Correlation
203(12)
11 Simple Regression
215(18)
11.1 Simple Linear Regression Model
215(3)
11.2 Hypothesis Testing in Simple Linear Regression
218(2)
11.3 Confidence Intervals of Parameters
220(1)
11.4 Adequacy of the Regression Model
221(3)
11.4.1 Residual Analysis to Test Uncorrelated Errors
221(1)
11.4.2 Residual Analysis to Test Normality
222(1)
11.4.3 Lack-of-Fit Test
222(2)
11.5 Coefficient of Determination
224(1)
11.6 Data Transformation
225(2)
11.7 Interpretation of Simple Regression Model
227(6)
12 Multiple Regression
233(12)
12.1 Multiple Regression Model
233(2)
12.2 Interpretation
235(1)
12.3 Prediction
235(1)
12.4 Use of Dummy Variables
236(1)
12.5 Other Regression Models
236(9)
Reference
244(1)
13 Sampling Theory
245(12)
13.1 Advantages of Sampling
245(1)
13.2 Considerations Prior to Sample Survey
246(1)
13.3 Considerations in Sampling
247(1)
13.4 Principal Steps Involved in the Choice of a Sample Size
248(1)
13.5 Types of Commonly Used Sampling Methods
249(8)
13.5.1 Simple Random Sampling
249(4)
13.5.2 Systematic Sampling
253(1)
13.5.3 Cluster Sampling
254(1)
13.5.4 Stratified Random Sampling
255(2)
14 Determination of Sample Size
257(20)
14.1 Basic Principle
257(1)
14.2 Sample Size in the Case of Random Sampling (Continuous Data)
258(2)
14.3 Sample Size in Case of Simple Random Sampling (Proportion)
260(2)
14.4 Sample Size in the Case of Stratified Sampling (Means)
262(5)
14.4.1 Allocation of Equal Subsamples to All Strata
262(2)
14.4.2 Proportional Allocation
264(1)
14.4.3 Optimum Allocation
264(3)
14.5 Sample Size in the Case of Stratified Sampling (Proportion)
267(3)
14.6 Simple Cluster Sampling
270(7)
15 Index Numbers
277(26)
15.1 Priority
278(4)
15.2 Satisfaction
282(4)
15.3 Agreement
286(2)
15.4 Performance
288(2)
15.5 Price Index
290(13)
15.5.1 Laspeyres Price Index
291(1)
15.5.2 Paasche Price Index
291(1)
15.5.3 Fisher's Ideal Price Index
292(1)
15.5.4 Quantity Index
292(2)
15.5.5 Total Cost Index
294(1)
15.5.6 Cost of Living/Standard of Living Index
295(3)
15.5.7 Inflation
298(5)
16 Analysis of Financial Data
303(22)
16.1 Financial Terms
303(2)
16.2 Calculation of Net Present Values
305(1)
16.3 Project Investment Data
306(2)
16.4 Risk and Statistical Estimation of IRR
308(3)
16.4.1 Risk
308(1)
16.4.2 Statistical Estimation of IRR
309(2)
16.5 Time Series Financial Data
311(2)
16.5.1 Trend Analysis
312(1)
16.6 Models for Time Series Financial Data
313(6)
16.6.1 Autoregressive Model
313(6)
16.7 Forecasting
319(2)
16.7.1 Forecasting Without a Model
319(1)
16.7.2 Forecasting Using a Model
320(1)
16.8 Seasonal Variation
321(4)
References
324(1)
17 Experimental Design
325(28)
17.1 Definition of Design of Experiments
325(1)
17.2 Terms Related to Experimental Design
326(1)
17.3 Procedure for Design of Experiments
327(2)
17.4 Types of Designs
329(1)
17.5 Illustration of a Completely Randomized Design
330(3)
17.6 Illustration of a 23 Full Factorial Design
333(2)
17.7 Concept of Anova
335(3)
17.7.1 Procedure in the Analysis
335(1)
17.7.2 Test with ANOVA
336(2)
17.8 Single Factor Experiments
338(15)
17.8.1 Analysis of Variance
338(2)
17.8.2 Tests on Individual Treatment Means
340(2)
17.8.3 Estimation of Treatment for Completely Randomized Design
342(1)
17.8.4 Multiple Factor Design
343(1)
17.8.5 Example of a 23 Factorial Design
343(1)
17.8.6 Randomized Block Design
344(9)
18 Statistical Quality Control
353(32)
18.1 History
353(1)
18.2 Areas of Statistical Quality Control
354(1)
18.3 Variation
354(1)
18.4 Control Chart
355(30)
18.4.1 Type of Data for Control Chart
355(1)
18.4.2 Types of Control Charts
355(1)
18.4.3 Control Limits in Control Charts
356(1)
18.4.4 Theoretical Basis of the Control Limits
356(1)
18.4.5 Control Chart for X-Bar and R
357(3)
18.4.6 I Chart (Individual Observation Chart)
360(2)
18.4.7 P Chart (Proportion Defective)
362(2)
18.4.8 C Chart (Control Chart for Defects)
364(2)
18.4.9 U Chart (Defects Per Unit)
366(2)
18.4.10 Np Control Chart
368(3)
18.4.11 Control Chart Zones
371(1)
18.4.12 Guide for Using Type of Control Chart
372(1)
18.4.13 Special Topics
373(5)
18.4.14 Summary of Control Chart Formulas
378(6)
References
384(1)
19 Summary for Hypothesis Testing
385(8)
19.1 Prerequisite
385(5)
19.1.1 Variable
385(1)
19.1.2 Hypothesis
386(1)
19.1.3 Hypothesis Testing
386(1)
19.1.4 Measurement of Data
386(1)
19.1.5 Objective
386(1)
19.1.6 Distributions
387(1)
19.1.7 Sample Size
387(1)
19.1.8 Probability
388(1)
19.1.9 Data Collection
388(1)
19.1.10 Graph for Initial Idea
388(1)
19.1.11 Type of Test
388(1)
19.1.12 Parameter and Statistics
389(1)
19.1.13 Model Fitting
389(1)
19.1.14 Dummy Variable
389(1)
19.1.15 SPSS
389(1)
19.2 Summary
390(3)
Statistical Tables 393(46)
Index 439