Atjaunināt sīkdatņu piekrišanu

E-grāmata: Approximate Deconvolution Models of Turbulence: Analysis, Phenomenology and Numerical Analysis

  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Mathematics 2042
  • Izdošanas datums: 06-Jan-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642244094
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 38,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Mathematics 2042
  • Izdošanas datums: 06-Jan-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642244094
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This volume presents a mathematical development of a recent approach to the modeling and simulation of turbulent flows based on methods for the approximate solution of inverse problems. The resulting Approximate Deconvolution Models or ADMs have some advantages over more commonly used turbulence models – as well as some disadvantages. Our goal in this book is to provide a clear and complete mathematical development of ADMs, while pointing out the difficulties that remain. In order to do so, we present the analytical theory of ADMs, along with its connections, motivations and complements in the phenomenology of and algorithms for ADMs.

Recenzijas

From the reviews:

This monograph presents a mathematical approach to turbulence modeling and is aimed at graduate students and researchers in the field of computational fluid dynamics. The book presents the governing Navier-Stokes equations and the basics of large eddy simulation from a mathematical perspective without going into details of the flow physics. Difficulties of the models in the vicinity of walls with no-slip boundary conditions are mentioned, and numerical examples of different flows illustrate some properties of the approximate deconvolution models. (Kai Schneider, Zentralblatt MATH, Vol. 1241, 2012)

1 Introduction
1(34)
1.1 The Navier--Stokes Equations
3(10)
1.1.1 Integral Invariants
5(2)
1.1.2 The K41 Theory of Homogeneous, Isotropic Turbulence
7(6)
1.2 Large Eddy Simulation
13(1)
1.3 Eddy Viscosity Closures
14(3)
1.4 Closure by van Cittert Approximate Deconvolution
17(8)
1.4.1 The Bardina Model
20(1)
1.4.2 The Accuracy of van Cittert Deconvolution
21(4)
1.5 Approximate Deconvolution Regularizations
25(4)
1.5.1 Time Relaxation
25(2)
1.5.2 The Leray-Deconvolution Regularization
27(1)
1.5.3 The NS-Alpha Regularization
28(1)
1.5.4 The NS-Omega Regularization
28(1)
1.6 The Problem of Boundary Conditions
29(3)
1.6.1 The Commutator Error
30(1)
1.6.2 Near Wall Modeling
30(1)
1.6.3 Changing the Averaging Operator to a Differential Filter
31(1)
1.6.4 Ad Hoc Corrections and Regularization Models
32(1)
1.6.5 Near Wall Resolution
32(1)
1.7 Ten Open Problems in the Analysis of ADMs
32(3)
2 Large Eddy Simulation
35(26)
2.1 The Idea of Large Eddy Simulation
35(2)
2.1.1 Differing Dynamics of the Large and Small Eddies
35(1)
2.1.2 The Eddy-Viscosity Hypothesis/Boussinesq Assumption
36(1)
2.2 Local Spacial Averages
37(9)
2.2.1 Top Hat Filter
39(1)
2.2.2 Discrete Filters
40(1)
2.2.3 Weighted Discrete Filters
40(1)
2.2.4 Other Filters
41(1)
2.2.5 Weighted Compact Discrete Filter from [ SAK01a]
41(1)
2.2.6 Differential Filters
42(3)
2.2.7 Scale Space: What Is the Right Averaging?
45(1)
2.3 The SFNSE
46(2)
2.4 Eddy Viscosity Models
48(3)
2.4.1 A First Choice of vT
50(1)
2.5 The Smagorinsky Model
51(3)
2.6 Some Smagorinsky Variants
54(4)
2.6.1 Using the Q-Criterion
55(1)
2.6.2 A Multiscale Turbulent Diffusion Coefficient
56(1)
2.6.3 Localization of Eddy Viscosity in Scale Space
56(1)
2.6.4 Vreman's Eddy Viscosity
57(1)
2.7 A Glimpse into Near Wall Models
58(1)
2.8 Remarks
59(2)
3 Approximate Deconvolution Operators and Models
61(28)
3.1 Useful Deconvolution Operators
61(4)
3.1.1 Approximate Deconvolution
63(2)
3.2 LES Approximate Deconvolution Models
65(1)
3.3 Examples of Approximate Deconvolution Operators
66(4)
3.3.1 Tikhonov Regularization
67(1)
3.3.2 Tikhonov-Lavrentiev Regularization
67(1)
3.3.3 A Variant on Tikhonov-Lavrentiev Regularization
68(1)
3.3.4 The van Cittert Regularization
68(1)
3.3.5 van Cittert with Relaxation Parameters
68(1)
3.3.6 Other Approximate Deconvolution Methods
69(1)
3.4 Analysis of van Cittert Deconvolution
70(5)
3.4.1 Proof
75(1)
3.5 Discrete Differential Filters
75(3)
3.6 Reversibility of Approximate Deconvolution Models
78(1)
3.7 The Zeroth Order Model
78(9)
3.7.1 Proof
81(6)
3.8 Remarks
87(2)
4 Phenomenology of ADMs
89(10)
4.1 Basic Properties of ADMs
89(2)
4.2 The ADM Energy Cascade
91(4)
4.2.1 Another Approach to the ADM Energy Spectrum
94(1)
4.2.2 The ADM Helicity Cascade
95(1)
4.3 The ADM Micro-Scale
95(2)
4.3.1 Design of an Experimental Test of the Model's Energy Cascade
97(1)
4.4 Remarks
97(2)
5 Time Relaxation Truncates Scales
99(22)
5.1 Time Relaxation
99(3)
5.2 The Microscale of Linear Time Relaxation
102(8)
5.2.1 Case 1: Fully Resolved
109(1)
5.2.2 Case 2: Under Resolved
109(1)
5.2.3 Case 3: Perfect Resolution
110(1)
5.3 Time Relaxation Does Not Alter Shock Speeds
110(2)
5.4 Nonlinear Time Relaxation
112(2)
5.4.1 Open Question 1: Does Nonlinear Time Relaxation Dissipate Energy in All Cases?
113(1)
5.4.2 Open Question 2: If not, What Is the Simplest Modification to Nonlinear Time Relaxation that Always Dissipates Energy?
113(1)
5.4.3 Open Question 3: How Is Nonlinear Time Relaxation to be Discretized in Time so as to be Unconditionally Stable and Require Filtering Only of Known Functions?
113(1)
5.5 Analysis of a Nonlinear Time Relaxation
114(6)
5.5.1 Open Question 4: Is the Extra (I -- G) Necessary to Ensure Energy Dissipation or Just a Mathematical Convenience?
115(1)
5.5.2 Open Question 5: If the Extra (I -- G) Is Necessary, How Is it to be Discretized in Time?
115(2)
5.5.3 The N = 0 Case
117(1)
5.5.4 The Analysis of Lilly
118(2)
5.5.5 Open Question 8: Is It Possible to Extend the Above Calculation of the Optimal Relaxation Parameter to the Original Version of Nonlinear Time Relaxation?
120(1)
5.6 Remarks
120(1)
6 The Leray-Deconvolution Regularization
121(24)
6.1 The Leray Regularization
121(3)
6.2 Dunca's Leray-Deconvolution Regularization
124(1)
6.3 Analysis of the Leray-Deconvolution Regularization
125(5)
6.3.1 Existence of Solutions
125(1)
6.3.2 Proof
126(3)
6.3.3 Limits of the Leray-Deconvolution Regularization
129(1)
6.4 Accuracy of the Leray-Deconvolution Family
130(4)
6.4.1 The Case of Homogeneous, Isotropic Turbulence
131(3)
6.5 Microscales
134(2)
6.5.1 Case 1
135(1)
6.5.2 Case 2
136(1)
6.6 Discretization
136(2)
6.7 Numerical Experiments with Leray-Deconvolution
138(6)
6.7.1 Convergence Rate Verification
138(1)
6.7.2 Two-Dimensional Channel Flow Over a Step
139(3)
6.7.3 Three-Dimensional Channel Flow Over a Step
142(2)
6.8 Remarks
144(1)
7 NS-Alpha- and NS-Omega-Deconvolution Regularizations
145(18)
7.1 Integral Invariants of the NSE
145(2)
7.2 The NS-Alpha Regularization
147(4)
7.2.1 The Periodic Case
147(3)
7.2.2 Discretizations of the NS-alpha Regularization
150(1)
7.3 The NS-Omega Regularization
151(3)
7.3.1 Motivation for NS-ω: The Challenges of Time Discretization
153(1)
7.4 Computational Problems with Rotation Form
154(3)
7.5 Numerical Experiments with NS-α
157(1)
7.5.1 Two-Dimensional Flow Over a Step
157(1)
7.5.2 Three-Dimensional Flow Over a Step
157(1)
7.6 Model Synthesis
158(3)
7.6.1 Synthesis of NS-α and ω Models
159(1)
7.6.2 Scale Truncation, Eddy Viscosity, VMMs and Time Relaxation
160(1)
7.7 Remarks
161(2)
A Deconvolution Under the No-Slip Condition and the Loss of Regularity
163(12)
A.1 Regularity by Direct Estimation of Derivatives
164(3)
A.2 The Bootstrap Argument
167(3)
A.2.1 The Case k = 3
167(1)
A.2.2 Observation
167(3)
A.3 Examples
170(2)
A.4 Application to Differential Filters
172(1)
A.5 Remarks
173(2)
References 175(8)
Index 183