|
|
1 | (6) |
|
|
1 | (6) |
Part I Discrete Time Models |
|
|
|
7 | (20) |
|
|
7 | (9) |
|
|
7 | (1) |
|
2.1.2 Portfolios and Arbitrage |
|
|
8 | (3) |
|
|
11 | (2) |
|
2.1.4 Risk Neutral Valuation |
|
|
13 | (3) |
|
2.2 The Multiperiod Model |
|
|
16 | (10) |
|
2.2.1 Portfolios and Arbitrage |
|
|
16 | (3) |
|
|
19 | (7) |
|
|
26 | (1) |
|
|
26 | (1) |
|
3 A More General One Period Model |
|
|
27 | (16) |
|
|
27 | (1) |
|
|
28 | (5) |
|
|
33 | (1) |
|
|
34 | (2) |
|
|
36 | (2) |
|
3.6 Stochastic Discount Factors |
|
|
38 | (1) |
|
|
39 | (4) |
Part II Stochastic Calculus |
|
|
|
43 | (24) |
|
|
43 | (2) |
|
|
43 | (2) |
|
|
45 | (2) |
|
|
47 | (2) |
|
|
49 | (2) |
|
4.5 Stochastic Calculus and the Ito Formula |
|
|
51 | (5) |
|
|
56 | (4) |
|
4.7 The Multidimensional Ito Formula |
|
|
60 | (2) |
|
4.8 Correlated Wiener Processes |
|
|
62 | (2) |
|
|
64 | (2) |
|
|
66 | (1) |
|
5 Stochastic Differential Equations |
|
|
67 | (20) |
|
5.1 Stochastic Differential Equations |
|
|
67 | (1) |
|
5.2 Geometric Brownian Motion |
|
|
68 | (3) |
|
|
71 | (1) |
|
5.4 The Infinitesimal Operator |
|
|
72 | (1) |
|
5.5 Partial Differential Equations |
|
|
73 | (3) |
|
5.6 The Kolmogorov Equations |
|
|
76 | (3) |
|
|
79 | (4) |
|
|
83 | (4) |
Part III Arbitrage Theory |
|
|
|
87 | (8) |
|
|
87 | (1) |
|
6.2 Self-financing Portfolios in Discrete Time |
|
|
87 | (4) |
|
|
87 | (1) |
|
6.2.2 Self-financing Portfolios |
|
|
88 | (2) |
|
6.2.3 The Cumulative Dividend Process |
|
|
90 | (1) |
|
6.3 Self-financing Portfolios in Continuous Time |
|
|
91 | (2) |
|
|
93 | (2) |
|
|
95 | (24) |
|
|
95 | (1) |
|
7.2 More on the Bank Account |
|
|
96 | (2) |
|
7.3 Contingent Claims and Arbitrage |
|
|
98 | (5) |
|
7.4 The Black-Scholes Equation |
|
|
103 | (3) |
|
7.5 Risk Neutral Valuation |
|
|
106 | (2) |
|
7.6 The Black-Scholes Formula |
|
|
108 | (2) |
|
7.7 Forward and Futures Contracts |
|
|
110 | (2) |
|
|
110 | (1) |
|
7.7.2 Futures Contracts and the Black Formula |
|
|
111 | (1) |
|
|
112 | (2) |
|
7.8.1 Historic Volatility |
|
|
113 | (1) |
|
|
113 | (1) |
|
|
114 | (2) |
|
|
116 | (2) |
|
|
118 | (1) |
|
8 Completeness and Hedging |
|
|
119 | (9) |
|
|
119 | (1) |
|
8.2 Completeness in the Black-Scholes Model |
|
|
120 | (5) |
|
8.3 Completeness-Absence of Arbitrage |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
127 | (1) |
|
9 A Primer on Incomplete Markets |
|
|
128 | (10) |
|
|
128 | (1) |
|
9.2 A Scalar Non-priced Underlying Asset |
|
|
128 | (7) |
|
|
135 | (2) |
|
|
137 | (1) |
|
|
137 | (1) |
|
10 Parity Relations and Delta Hedging |
|
|
138 | (12) |
|
|
138 | (2) |
|
|
140 | (4) |
|
10.3 Delta and Gamma Hedging |
|
|
144 | (3) |
|
|
147 | (3) |
|
11 The Martingale Approach to Arbitrage Theory |
|
|
150 | (21) |
|
11.1 The Case of Zero Interest Rate |
|
|
151 | (2) |
|
11.2 Absence of Arbitrage and Martingale Measures |
|
|
153 | (1) |
|
11.3 A Rough Sketch of the Proof |
|
|
154 | (5) |
|
11.3.1 Existence of an EMM Implies Absence of Arbitrage |
|
|
154 | (1) |
|
11.3.2 Absence of Arbitrage Implies Existence of an EMM |
|
|
155 | (4) |
|
|
159 | (3) |
|
|
162 | (2) |
|
11.6 Pricing Contingent Claims |
|
|
164 | (1) |
|
11.7 Pricing by Replication |
|
|
165 | (1) |
|
11.8 Stochastic Discount Factors |
|
|
166 | (1) |
|
11.9 Summary for the Working Economist |
|
|
167 | (3) |
|
|
170 | (1) |
|
12 The Mathematics of the Martingale Approach |
|
|
171 | (14) |
|
12.1 Stochastic Integral Representations |
|
|
171 | (3) |
|
12.2 The Girsanov Theorem: Heuristics |
|
|
174 | (2) |
|
12.3 The Girsanov Theorem |
|
|
176 | (3) |
|
12.4 The Converse of the Girsanov Theorem |
|
|
179 | (1) |
|
12.5 Girsanov Transformations and Stochastic Differentials |
|
|
180 | (1) |
|
12.6 Maximum Likelihood Estimation |
|
|
181 | (2) |
|
|
183 | (1) |
|
|
184 | (1) |
|
13 Black-Scholes from a Martingale Point of View |
|
|
185 | (6) |
|
13.1 Absence of Arbitrage |
|
|
185 | (2) |
|
|
187 | (1) |
|
|
187 | (4) |
|
14 Multidimensional Models: Martingale Approach |
|
|
191 | (11) |
|
14.1 Absence of Arbitrage |
|
|
192 | (1) |
|
|
193 | (1) |
|
|
194 | (2) |
|
|
196 | (1) |
|
14.5 Markovian Models and PDEs |
|
|
197 | (1) |
|
14.6 Market Prices of Risk |
|
|
198 | (1) |
|
14.7 The Stochastic Discount Factor |
|
|
199 | (1) |
|
14.8 The Hansen-Jagannathan Bounds |
|
|
200 | (1) |
|
|
201 | (1) |
|
|
201 | (1) |
|
|
202 | (17) |
|
|
202 | (1) |
|
|
202 | (2) |
|
15.3 Changing the Numeraire |
|
|
204 | (3) |
|
|
207 | (3) |
|
|
210 | (2) |
|
15.5.1 Using the T-bond as Numeraire |
|
|
211 | (1) |
|
15.6 A General Option Pricing Formula |
|
|
212 | (3) |
|
|
212 | (1) |
|
15.6.2 The Case of Deterministic Volatility |
|
|
213 | (2) |
|
15.7 The Numeraire Portfolio |
|
|
215 | (2) |
|
|
215 | (1) |
|
15.7.2 The Objective Measure P as a Martingale Measure |
|
|
216 | (1) |
|
|
217 | (1) |
|
|
217 | (2) |
|
|
219 | (17) |
|
|
219 | (7) |
|
16.1.1 Dividend Structure |
|
|
219 | (1) |
|
16.1.2 The Price Structure |
|
|
220 | (1) |
|
16.1.3 A Black-Scholes Model with a Discrete Dividend |
|
|
221 | (1) |
|
|
222 | (1) |
|
16.1.5 Risk Neutral Valuation |
|
|
223 | (1) |
|
|
224 | (2) |
|
16.2 Continuous Dividends I: Classical Methods |
|
|
226 | (3) |
|
16.2.1 Continuous Dividend Yield |
|
|
226 | (3) |
|
16.3 Continuous Dividends II: Martingale Methods |
|
|
229 | (6) |
|
16.3.1 The Bank Account as Numeraire |
|
|
230 | (1) |
|
16.3.2 Continuous Dividend Yield Revisited |
|
|
231 | (1) |
|
16.3.3 An Arbitrary Numeraire |
|
|
232 | (3) |
|
|
235 | (1) |
|
17 Forward and Futures Contracts |
|
|
236 | (8) |
|
|
236 | (2) |
|
|
238 | (3) |
|
17.3 Futures Options and Black-76 |
|
|
241 | (2) |
|
|
241 | (1) |
|
17.3.2 The Black-76 Formula |
|
|
241 | (2) |
|
|
243 | (1) |
|
|
243 | (1) |
|
|
244 | (13) |
|
18.1 Pure Currency Contracts |
|
|
244 | (3) |
|
18.2 The Martingale Approach |
|
|
247 | (3) |
|
18.3 Domestic and Foreign Equity Markets |
|
|
250 | (2) |
|
18.4 An Extended Black-Scholes Model |
|
|
252 | (1) |
|
|
253 | (2) |
|
|
255 | (1) |
|
|
256 | (1) |
|
19 Bonds and Interest Rates |
|
|
257 | (15) |
|
|
257 | (1) |
|
|
258 | (7) |
|
|
258 | (2) |
|
19.2.2 Relations between df (t,T), dp(t,T), and dr(t) |
|
|
260 | (3) |
|
19.2.3 An Expectation Hypothesis |
|
|
263 | (1) |
|
19.2.4 An Alternative View of the Money Account |
|
|
264 | (1) |
|
19.3 Coupon Bonds, Swaps, and Yields |
|
|
265 | (5) |
|
19.3.1 Fixed Coupon Bonds |
|
|
266 | (1) |
|
19.3.2 Floating Rate Bonds |
|
|
266 | (1) |
|
19.3.3 Interest Rate Swaps |
|
|
267 | (2) |
|
19.3.4 Yield and Duration |
|
|
269 | (1) |
|
|
270 | (1) |
|
|
271 | (1) |
|
|
272 | (8) |
|
|
272 | (2) |
|
20.2 The Term Structure Equation |
|
|
274 | (2) |
|
|
276 | (2) |
|
|
278 | (1) |
|
|
279 | (1) |
|
21 Martingale Models for the Short Rate |
|
|
280 | (16) |
|
|
280 | (1) |
|
21.2 Properties of the Short Rate Models |
|
|
281 | (3) |
|
21.2.1 Models with Linear Dynamics |
|
|
281 | (1) |
|
21.2.2 Models with Mean Reversion |
|
|
282 | (1) |
|
|
283 | (1) |
|
21.2.4 Square Root Models |
|
|
283 | (1) |
|
21.3 Inversion of the Yield Curve |
|
|
284 | (1) |
|
21.4 Affine Term Structures |
|
|
285 | (3) |
|
21.4.1 Definition and Existence |
|
|
285 | (3) |
|
21.5 Analytical Results for Some Standard Models |
|
|
288 | (4) |
|
|
288 | (1) |
|
|
289 | (1) |
|
|
290 | (1) |
|
21.5.4 The Hull-White Model |
|
|
290 | (2) |
|
21.6 Bond Options in the Hull-White Model |
|
|
292 | (1) |
|
|
293 | (2) |
|
|
295 | (1) |
|
|
296 | (9) |
|
22.1 The Heath-Jarrow-Morton Framework |
|
|
296 | (2) |
|
|
298 | (2) |
|
22.3 The General Gaussian Model |
|
|
300 | (1) |
|
22.4 The Musiela Parameterization |
|
|
301 | (1) |
|
|
302 | (2) |
|
|
304 | (1) |
|
|
305 | (12) |
|
23.1 Caps: Definition and Market Practice |
|
|
306 | (2) |
|
23.2 The LIBOR Market Model |
|
|
308 | (1) |
|
23.3 Pricing Caps in the LIBOR Model |
|
|
309 | (1) |
|
23.4 Terminal Measure Dynamics and Existence |
|
|
310 | (3) |
|
23.5 Calibration and Simulation |
|
|
313 | (1) |
|
23.6 The Discrete Savings Account |
|
|
314 | (2) |
|
|
316 | (1) |
|
24 Potentials and Positive Interest |
|
|
317 | (16) |
|
|
317 | (1) |
|
24.2 The Flesaker-Hughston Framework |
|
|
318 | (3) |
|
24.3 Changing Base Measure |
|
|
321 | (1) |
|
24.4 Decomposition of a Potential |
|
|
322 | (1) |
|
24.5 The Markov Potential Approach of Rogers |
|
|
323 | (5) |
|
|
328 | (1) |
|
|
329 | (4) |
Part IV Optimal Control and Investment Theory |
|
|
25 Stochastic Optimal Control |
|
|
333 | (18) |
|
|
333 | (1) |
|
|
334 | (3) |
|
25.3 Embedding the Problem |
|
|
337 | (2) |
|
25.4 Time Consistency and the Bellman Principle |
|
|
339 | (1) |
|
25.5 Deriving the Hamilton-Jacobi-Bellman Equation |
|
|
340 | (5) |
|
25.6 Handling the HJB Equation |
|
|
345 | (2) |
|
25.7 The Linear Regulator |
|
|
347 | (2) |
|
|
349 | (1) |
|
|
350 | (1) |
|
26 Optimal Consumption and Investment |
|
|
351 | (13) |
|
|
351 | (1) |
|
26.2 Optimal Consumption and Investment |
|
|
352 | (3) |
|
26.3 The Mutual Fund Theorems |
|
|
355 | (6) |
|
26.3.1 The Case with No Risk Free Asset |
|
|
355 | (4) |
|
26.3.2 The Case with a Risk Free Asset |
|
|
359 | (2) |
|
|
361 | (2) |
|
|
363 | (1) |
|
27 The Martingale Approach to Optimal Investment |
|
|
364 | (12) |
|
|
364 | (1) |
|
|
365 | (1) |
|
27.3 The Optimal Terminal Wealth |
|
|
366 | (1) |
|
27.4 The Optimal Wealth Process |
|
|
367 | (1) |
|
27.5 The Optimal Portfolio |
|
|
368 | (1) |
|
|
369 | (2) |
|
27.6.1 The Optimal Terminal Wealth |
|
|
369 | (1) |
|
27.6.2 The Optimal Wealth Process |
|
|
369 | (1) |
|
27.6.3 The Optimal Portfolio |
|
|
370 | (1) |
|
27.7 Other Utility Functions |
|
|
371 | (1) |
|
27.8 Optimal Consumption Problems |
|
|
371 | (3) |
|
|
374 | (1) |
|
|
375 | (1) |
|
28 Optimal Stopping Theory and American Options |
|
|
376 | (23) |
|
|
376 | (1) |
|
|
376 | (1) |
|
|
377 | (1) |
|
|
378 | (8) |
|
|
378 | (4) |
|
|
382 | (2) |
|
|
384 | (2) |
|
|
386 | (6) |
|
|
386 | (1) |
|
|
387 | (5) |
|
28.5.3 Connections to the General Theory |
|
|
392 | (1) |
|
|
392 | (3) |
|
28.6.1 The American Call without Dividends |
|
|
392 | (1) |
|
28.6.2 The American Put Option |
|
|
392 | (2) |
|
28.6.3 The Perpetual American Put |
|
|
394 | (1) |
|
|
395 | (1) |
|
|
395 | (4) |
Part V Incomplete Markets |
|
|
|
399 | (6) |
|
|
399 | (1) |
|
29.2 A Markov Factor Model |
|
|
400 | (1) |
|
29.3 The Independent Factor Markov Model |
|
|
401 | (2) |
|
29.3.1 Absence of Arbitrage |
|
|
402 | (1) |
|
|
402 | (1) |
|
29.4 Methods to Handle Market Incompleteness |
|
|
403 | (1) |
|
|
404 | (1) |
|
30 The Esscher Transform and the Minimal Martingale Measure |
|
|
405 | (8) |
|
30.1 The Esscher Transform |
|
|
405 | (4) |
|
30.1.1 The Standard Esscher Transform |
|
|
405 | (1) |
|
30.1.2 The Generalized Esscher Transform |
|
|
406 | (2) |
|
30.1.3 The Markov Factor Model |
|
|
408 | (1) |
|
30.1.4 The Independent Factor Markov Model |
|
|
408 | (1) |
|
30.2 The Minimal Martingale Measure |
|
|
409 | (3) |
|
30.2.1 Definition and Existence |
|
|
410 | (1) |
|
30.2.2 Basic Properties of QM |
|
|
411 | (1) |
|
30.2.3 Economic Interpretation of QM |
|
|
411 | (1) |
|
|
412 | (1) |
|
31 Minimizing f-Divergence |
|
|
413 | (13) |
|
31.1 Definition and Basic Properties |
|
|
413 | (1) |
|
31.2 Minimal Reverse Entropy |
|
|
414 | (1) |
|
31.3 Minimal Entropy in a Factor Model |
|
|
415 | (3) |
|
|
418 | (7) |
|
31.4.1 Utility Maximization of Financial Derivatives |
|
|
419 | (2) |
|
|
421 | (2) |
|
|
423 | (1) |
|
31.4.4 Exponential Utility |
|
|
423 | (2) |
|
|
425 | (1) |
|
32 Portfolio Optimization in Incomplete Markets |
|
|
426 | (10) |
|
|
426 | (1) |
|
32.2 The Complete Market Case |
|
|
427 | (1) |
|
32.3 Incomplete Market, Finite Ω |
|
|
428 | (5) |
|
32.4 Incomplete Market, General Ω |
|
|
433 | (2) |
|
|
435 | (1) |
|
33 Utility Indifference Pricing and Other Topics |
|
|
436 | (5) |
|
33.1 Global Indifference Pricing |
|
|
436 | (2) |
|
33.2 Marginal Indifference Pricing |
|
|
438 | (1) |
|
|
439 | (1) |
|
|
440 | (1) |
|
|
441 | (10) |
|
|
441 | (2) |
|
|
443 | (1) |
|
34.3 The Good Deal Bounds |
|
|
443 | (2) |
|
34.4 The Embedded Optimization Problem |
|
|
445 | (1) |
|
34.5 Relations to the Minimal Martingale Measure |
|
|
445 | (1) |
|
34.6 An Option with Basis Risk |
|
|
446 | (2) |
|
|
448 | (3) |
Part VI Dynamic Equilibrium Theory |
|
|
35 Equilibrium Theory: A Simple Production Model |
|
|
451 | (7) |
|
|
451 | (2) |
|
|
453 | (2) |
|
35.3 Introducing a Central Planner |
|
|
455 | (2) |
|
|
457 | (1) |
|
|
457 | (1) |
|
36 The Cox-Ingersoll-Ross Factor Model |
|
|
458 | (9) |
|
|
458 | (1) |
|
|
458 | (1) |
|
36.1.2 Endogenous Objects |
|
|
458 | (1) |
|
|
459 | (1) |
|
36.2 The Portfolio Problem |
|
|
459 | (2) |
|
36.2.1 Portfolio Dynamics |
|
|
460 | (1) |
|
36.2.2 The Control Problem and the HJB Equation |
|
|
460 | (1) |
|
|
461 | (1) |
|
36.4 The Short Rate and the Risk Premium for F |
|
|
462 | (1) |
|
36.5 The Equilibrium Stochastic Discount Factor |
|
|
462 | (2) |
|
36.6 Risk Neutral Valuation |
|
|
464 | (1) |
|
36.7 Introducing a Central Planner |
|
|
464 | (1) |
|
|
465 | (1) |
|
|
466 | (1) |
|
37 The Cox-Ingersoll-Ross Interest Rate Model |
|
|
467 | (3) |
|
|
469 | (1) |
|
|
469 | (1) |
|
38 Endowment Equilibrium: Unit Net Supply |
|
|
470 | (11) |
|
|
470 | (2) |
|
|
470 | (1) |
|
38.1.2 Endogenous Objects |
|
|
470 | (1) |
|
|
471 | (1) |
|
38.1.4 Equilibrium Conditions |
|
|
472 | (1) |
|
38.2 The Martingale Approach |
|
|
472 | (3) |
|
38.2.1 The Control Problem |
|
|
472 | (1) |
|
|
473 | (1) |
|
|
474 | (1) |
|
|
475 | (3) |
|
38.3.1 The General Scalar Case |
|
|
475 | (1) |
|
|
476 | (2) |
|
38.4 Several Endowment Processes |
|
|
478 | (1) |
|
|
479 | (1) |
|
|
480 | (1) |
Appendices |
|
|
A Measure and Integration |
|
|
481 | (26) |
|
|
481 | (2) |
|
A.2 Measures and Sigma-Algebras |
|
|
483 | (2) |
|
|
485 | (4) |
|
A.4 Sigma-Algebras and Partitions |
|
|
489 | (1) |
|
|
490 | (1) |
|
|
491 | (1) |
|
|
492 | (3) |
|
A.8 Sigma-Algebras and Generators |
|
|
495 | (4) |
|
|
499 | (1) |
|
A.10 The Lebesgue Integral |
|
|
499 | (1) |
|
A.11 The Radon-Nikodym Theorem |
|
|
500 | (4) |
|
|
504 | (2) |
|
|
506 | (1) |
|
|
507 | (19) |
|
B.1 Random Variables and Processes |
|
|
507 | (3) |
|
B.2 Partitions and Information |
|
|
510 | (1) |
|
B.3 Sigma-Algebras and Information |
|
|
511 | (3) |
|
|
514 | (2) |
|
B.5 Conditional Expectations |
|
|
516 | (6) |
|
B.6 Equivalent Probability Measures |
|
|
522 | (2) |
|
|
524 | (1) |
|
|
525 | (1) |
|
C Martingales and Stopping Times |
|
|
526 | (10) |
|
|
526 | (3) |
|
C.2 Discrete Stochastic Integrals |
|
|
529 | (1) |
|
|
530 | (1) |
|
|
530 | (3) |
|
|
533 | (3) |
|
|
536 | (3) |
|
|
536 | (1) |
|
D.2 Lagrange Functions and Saddle Points |
|
|
536 | (1) |
|
|
537 | (2) |
References |
|
539 | (10) |
Index |
|
549 | |