Atjaunināt sīkdatņu piekrišanu

E-grāmata: Arid Zone Geomorphology - Process, Form and Change in Drylands 3e: Process, Form and Change in Drylands 3rd Edition [Wiley Online]

Edited by (University Of Oxford)
  • Formāts: 648 pages
  • Izdošanas datums: 04-Mar-2011
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 470710772
  • ISBN-13: 9780470710777
  • Wiley Online
  • Cena: 191,43 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formāts: 648 pages
  • Izdošanas datums: 04-Mar-2011
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 470710772
  • ISBN-13: 9780470710777
The new edition of Arid Zone Geomorphology aims to encapsulate the advances that have been made in recent years in the investigation and explanation of landforms and geomorphological processes in drylands. Building on the success of the previous two editions, the Third Edition has been completely revised and updated to reflect the latest developments in the field. Whilst this latest edition will remain a comprehensive reference to the subject, the book has been restructured to include regional case studies throughout to enhance student understanding and is clearly defined into five distinct sections; Firstly, the book introduces the reader to Large Scale Controls and Variability in Drylands and then moves on to consider Surface Processes and Characteristics; The Work of Water, The Work of the Wind. The book concludes with a section on Living with Dryland Geomorphology that includes a chapter on geomorphological hazards and the human impact on these environments.

Once again, recognised world experts in the field have been invited to contribute chapters in order to present a comprehensive and up-to-date overview of current knowledge about the processes shaping the landscape of deserts and arid regions. In order to broaden the appeal of the Third Edition, the book has been reduced in extent by 100 pages and the Regional chapters have been omitted in favour of the inclusion of key regional case studies throughout the book. The Editor is also considering the inclusion of a supplementary website that could include further images, problems and case studies.

List of contributors
xvii
Preface to the first edition xix
Preface to the second edition xxi
Preface to the third edition xxiii
I Large-scale controls and variability in drylands
1(82)
1 Arid environments: their nature and extent
3(14)
David S.G. Thomas
1.1 Geomorphology in arid environments
3(1)
1.2 Arid zone distinctiveness and the quest for explanation
4(1)
1.3 Arid zones: terminology and definitions
5(2)
1.3.1 Terminology
5(1)
1.3.2 Definition
5(2)
1.4 The age of aridity on Earth
7(1)
1.5 The distribution of arid zones
8(1)
1.6 Causes of aridity
9(1)
1.6.1 Atmospheric stability
9(1)
1.6.2 Continentality
9(1)
1.6.3 Topography
9(1)
1.6.4 Cold ocean currents
10(1)
1.7 Climate variability
10(1)
1.8 Dryland ecosystems
10(2)
1.8.1 Arid zone geomorphology
12(1)
1.9 Arid zone geomorphology and people
12(1)
1.10 Organisation of this book
13(4)
References
14(3)
2 Tectonic frameworks
17(10)
Helen Rendell
2.1 Introduction
17(1)
2.2 Tectonic setting of drylands
18(1)
2.3 Uplift and erosion, subsidence and sedimentation
18(2)
2.4 Lengths of record
20(1)
2.5 Existing erosional and depositional records in arid environments
21(2)
2.5.1 Drainage patterns and fluvial systems
21(1)
2.5.2 Playas
22(1)
2.5.3 Desert pavements
22(1)
2.5.4 Aeolian sequences
23(1)
2.6 Selected examples of the geomorphological impact of active tectonics in arid environments
23(1)
2.6.1 Tectonic disruption of fluvial systems
23(1)
2.6.2 Tectonic controls on alluvial sedimentation
23(1)
2.7 Conclusions
24(3)
References
24(3)
3 Climatic frameworks: legacies from the past
27(26)
David S.G. Thomas
Sallie L. Burrough
3.1 Introduction
27(1)
3.2 The significance of arid zone fluctuations in the past
27(12)
3.2.1 Ancient arid zones
27(1)
3.2.2 The development of aridity in the Mesozoic and Cenozoic
28(1)
3.2.3 The Quaternary Period
29(1)
3.2.4 Sedimentary records
29(3)
3.2.5 Marine sediments and palaeoaridity
32(2)
3.2.6 Rock varnish
34(1)
3.2.7 Geomorphological evidence of arid zone change
35(1)
3.2.8 Arid zone contraction
36(2)
3.2.9 Ecological evidence
38(1)
3.3 Dating arid zone fluctuations
39(1)
3.4 Climatic interpretations and issues
39(4)
3.4.1 Aridity during glacial times?
41(1)
3.4.2 Drivers of late glacial tropical aridity
42(1)
3.5 Conclusions
43(10)
References
44(9)
4 Dryland system variability
53(8)
David S.G. Thomas
4.1 A framework for dryland diversity
53(2)
4.2 Geomonotony: how unvarying are the `flat' drylands of the world?
55(2)
4.3 Within-dryland diversity
57(1)
4.4 Summary issues
58(3)
References
59(2)
5 Extraterrestrial arid surface processes
61(22)
Jonathan Clarke
5.1 Introduction
61(1)
5.2 What does `aridity' mean beyond Earth?
61(1)
5.3 Why should planetary scientists understand terrestrial arid geomorphology?
62(1)
5.4 What can terrestrial geomorphologists learn from a solar system perspective?
63(1)
5.5 Mars: water-based aridity
64(8)
5.5.1 Overview
64(1)
5.5.2 The history of atmosphere--surface interactions
64(2)
5.5.3 Martian water cycle
66(1)
5.5.4 Surface images
66(2)
5.5.5 The geomorphology of Mars
68(4)
5.5.6 Summary
72(1)
5.6 Titan: methane-based aridity?
72(4)
5.6.1 Methane cycle
73(1)
5.6.2 Surface images
74(1)
5.6.3 Lakes
74(1)
5.6.4 Rock breakdown: process and form
75(1)
5.6.5 Aeolian landforms
75(1)
5.6.6 Fluvial systems
75(1)
5.6.7 Summary
76(1)
5.7 Venus: extreme aridity
76(3)
5.7.1 Surface--atmosphere interaction
76(1)
5.7.2 Surface images
76(1)
5.7.3 Rock breakdown
77(1)
5.7.4 Aeolian landforms
78(1)
5.7.5 Summary
79(1)
5.8 Future Directions
79(4)
References
79(4)
II Surface processes and characteristics
83(152)
6 Weathering systems
85(16)
Heather A. Wiles
6.1 Introduction
85(2)
6.2 What makes arid environments unusual in terms of weathering systems?
87(1)
6.3 Theoretical underpinnings of weathering systems research
88(2)
6.4 Current weathering study methods
90(2)
6.5 Linking processes to form in arid weathering systems
92(3)
6.6 Explaining the development of weathering landforms in arid environments
95(2)
6.7 Weathering rates in arid environments
97(1)
6.8 Arid weathering and landscape evolution
97(1)
6.9 Scale and arid weathering systems
98(3)
Acknowledgement
98(1)
References
98(3)
7 Desert soils
101(30)
David L. Dunkerley
7.1 Introduction: the nature and significance of desert soils
101(2)
7.2 Taxonomy of desert soils
103(1)
7.2.1 A note on terminology of near-surface features in desert soils
104(1)
7.3 Some distinctive aspects of desert soil development
104(1)
7.4 Stone-mantled surfaces and desert pavements
105(1)
7.5 Inorganic seals at the soil surface
106(15)
7.5.1 Raindrop properties and raindrop impact seals
106(3)
7.5.2 Factors known to be significant in the formation of raindrop impact seals
109(1)
7.5.3 Depositional seals
109(1)
7.5.4 Effects of seals on infiltration and erosion
110(1)
7.5.5 Biological soil crusts
111(1)
7.5.6 The habitats or niches exploited by microphytic plants in drylands
112(1)
7.5.7 The organisms forming biological soil crusts
113(1)
7.5.8 The classification of biological soil crusts
114(1)
7.5.9 Effects of biological soil crusts on infiltration and overland flow
115(4)
7.5.10 Effects of biological crusts on soil stability and erosion resistance
119(2)
7.5.11 Possible effects of climate change on biological soil crusts
121(1)
7.6 Vesicular soil structures
121(4)
7.6.1 Comparing the infiltrability of biological, raindrop impact and vesicular surfaces
122(1)
7.6.2 Spatial heterogeneity of desert soils
123(2)
7.7 Conclusions
125(6)
References
125(6)
8 Desert crusts and rock coatings
131(50)
David J. Nash
8.1 Introduction
131(1)
8.2 Sodium nitrate deposits
132(3)
8.2.1 General characteristics and distribution
132(1)
8.2.2 Micromorphology, chemistry and mode of formation
133(2)
8.3 Halite crusts
135(2)
8.3.1 General characteristics and distribution
135(1)
8.3.2 Micromorphology and chemistry
136(1)
8.3.3 Mode of formation
137(1)
8.4 Gypsum crusts
137(4)
8.4.1 General characteristics
137(2)
8.4.2 Distribution
139(1)
8.4.3 Micromorphology and chemistry
140(1)
8.4.4 Modes of formation
140(1)
8.5 Calcrete
141(10)
8.5.1 General characteristics
141(2)
8.5.2 Distribution
143(3)
8.5.3 Micromorphology and chemistry
146(2)
8.5.4 Mode of origin
148(3)
8.6 Silcrete
151(7)
8.6.1 General characteristics
151(1)
8.6.2 Distribution
152(1)
8.6.3 Micromorphology and chemistry
153(3)
8.6.4 Mode of formation
156(2)
8.7 Desert rock coatings
158(5)
8.7.1 General controls on formation
158(1)
8.7.2 Rock varnish
159(3)
8.7.3 Silica glazes and iron films
162(1)
8.8 Palaeoenvironmental significance of crusts
163(18)
References
165(16)
9 Pavements and stone mantles
181(28)
Julie E. Laity
9.1 Introduction
181(1)
9.2 Surface types: hamadas and stony surfaces
181(4)
9.2.1 Hamada
181(1)
9.2.2 Stony surfaces: gobi, serir, gibber plains and desert pavements
182(3)
9.3 General theories concerning stony surface formation
185(4)
9.3.1 Deflation
186(1)
9.3.2 Concentration by surface wash and rain splash
186(1)
9.3.3 Upward migration of stones
187(1)
9.3.4 Accretion of aeolian fines
188(1)
9.3.5 Desert pavement formation by aeolian aggradation and development of an accretionary mantle
188(1)
9.4 Stone pavement characteristics
189(1)
9.4.1 Setting
189(1)
9.4.2 Surface clast concentration and characteristics
189(1)
9.5 Processes of pavement formation
190(2)
9.6 Processes of clast size reduction in pavements
192(2)
9.6.1 Pavement soils
192(2)
9.7 Secondary characteristics of pavement surfaces and regional differences in pavement formation
194(1)
9.7.1 Presence of calcium carbonate and carbonate collars
194(1)
9.7.2 Pitting
194(1)
9.7.3 Development of varnish
194(1)
9.7.4 Embedded clasts
194(1)
9.7.5 Clast orientation
195(1)
9.7.6 Clast rubification
195(1)
9.7.7 Development of ventifacted surfaces
195(1)
9.8 Secondary modifications to pavement surfaces
195(3)
9.8.1 Patterns in pavement
195(1)
9.8.2 Animal burrowing, vegetation and stone displacement
195(2)
9.8.3 Regeneration of surfaces by rainfall and runoff events
197(1)
9.8.4 Earthquakes
198(1)
9.8.5 Off-road vehicle disturbance
198(1)
9.8.6 Removal of stones for agriculture
198(1)
9.9 Ecohydrology of pavement surfaces
198(2)
9.9.1 Infiltration in pavements and runoff potential
199(1)
9.9.2 Ecohydrologic relationships and vegetation associations
199(1)
9.10 Relative and absolute dating of geomorphic surfaces based on pavement development
200(2)
9.10.1 Changes in surface characteristics
200(1)
9.10.2 Pavement characteristics and geomorphic surface ages
201(1)
9.10.3 Pavement surfaces as a tool in geomorphic assessment
201(1)
9.11 Conclusions
202(7)
References
204(5)
10 Slope systems
209(26)
John Wainwright
Richard E. Brazier
10.1 Introduction
209(3)
10.1.1 Contexts of slope systems
209(3)
10.2 Badlands
212(10)
10.2.1 Processes and rates of badland evolution
219(3)
10.3 Rock slopes
222(6)
10.3.1 Bare rock or slick-rock slopes
222(4)
10.3.2 Distinctive landforms of rock- and debris-mantled slopes
226(2)
10.4 Conclusion
228(7)
References
229(6)
III The work of water
235(190)
11 Runoff generation, overland flow and erosion on hillslopes
237(32)
John Wainwright
Louise J. Bracken
11.1 Introduction
237(3)
11.2 Infiltration processes
240(1)
11.3 Factors affecting infiltration
241(7)
11.3.1 Controls at the surface--atmosphere interface
241(5)
11.3.2 Subsurface controls
246(2)
11.4 Runoff generation
248(6)
11.4.1 Ponding and surface storage
248(2)
11.4.2 Flow hydraulics
250(2)
11.4.3 Pipes and macropore flow
252(1)
11.4.4 Scales of overland flow
252(2)
11.5 Erosion processes on hillslopes
254(5)
11.5.1 Splash
255(1)
11.5.2 Unconcentrated overland-flow erosion
256(1)
11.5.3 Concentrated overland-flow erosion
256(3)
11.5.4 Patterns and scales of sediment transport
259(1)
11.6 Conclusions
259(10)
References
259(10)
12 Distinctiveness and diversity of arid zone river systems
269(32)
Stephen Tooth
Gerald C. Nanson
12.1 Introduction
269(1)
12.2 Distinctiveness of dryland rivers
270(3)
12.3 Diversity of dryland rivers
273(16)
12.3.1 Higher energy dryland rivers: the Mediterranean region
274(6)
12.3.2 Moderate and lower energy dryland rivers: southern Africa
280(4)
12.3.3 Lower energy dryland rivers: Australia
284(5)
12.4 Reassessing distinctiveness and diversity
289(4)
12.4.1 Downstream flow decreases and localised flood patterns
291(1)
12.4.2 Induration of alluvial sediments
291(2)
12.4.3 Channel--vegetation interactions
293(1)
12.4.4 Fluvial--aeolian interactions
293(1)
12.5 Conclusions
293(8)
References
294(7)
13 Channel form, flows and sediments of endogenous ephemeral rivers in deserts
301(32)
Ian Reid
Lynne E. Frostick
13.1 Introduction
301(1)
13.2 Rainfall and river discharge
302(7)
13.2.1 Storm characteristics
302(2)
13.2.2 Flash flood hydrograph
304(1)
13.2.3 Transmission losses
305(2)
13.2.4 Drainage basin size and water discharge
307(2)
13.3 Ephemeral river channel geometry
309(2)
13.3.1 Channel width
309(1)
13.3.2 Channel bed morphology
309(2)
13.4 Fluvial sediment transport
311(9)
13.4.1 Scour and fill
311(3)
13.4.2 Sediment transport in suspension
314(3)
13.4.3 Sediment transport along the stream bed
317(3)
13.5 Desert river deposits
320(4)
13.5.1 Thin beds
321(1)
13.5.2 Predominance of horizontal lamination in sand beds
322(2)
13.5.3 Mud drapes and mud intraclasts
324(1)
13.6 Conclusions
324(9)
References
327(6)
14 Dryland alluvial fans
333(40)
Adrian Harvey
14.1 Introduction: dryland alluvial fans -- an overview
333(5)
14.1.1 Definitions, local occurrence, general morphology
333(1)
14.1.2 Global occurrence and distribution of dryland alluvial fans
334(4)
14.1.3 The role of alluvial fans within dryland fluvial systems
338(1)
14.2 Process and form on dryland alluvial fans
338(7)
14.2.1 Sediment supply, transport and depositional processes
338(2)
14.2.2 Post-depositional modification of dry region fan surfaces
340(2)
14.2.3 Alluvial fan sediment sequences and spatial variations
342(3)
14.2.4 Alluvial fan morphology and style
345(1)
14.3 Factors controlling alluvial fan dynamics
345(13)
14.3.1 Passive factors: influence on fan morphology
347(4)
14.3.2 Dynamic controls
351(7)
14.4 Alluvial fan dynamics
358(4)
14.4.1 Expressions of fan dynamics
358(1)
14.4.2 Interactions between the dynamic controls: case studies of alluvial fan response to Late Quaternary environmental change
358(4)
14.5 Discussion: significance of dry-region alluvial fans
362(11)
14.5.1 Commonly held myths and outdated concepts
362(1)
14.5.2 Significance to science
362(1)
14.5.3 Significance of dry-region alluvial fans for society
363(1)
Acknowledgements
364(1)
References
364(9)
15 Pans, playas and salt lakes
373(30)
Paul A. Shaw
Rob G. Bryant
15.1 The nature and occurrence of pans, playas and salt lakes
373(6)
15.1.1 Play a and pan terminology
374(1)
15.1.2 General characteristics
374(2)
15.1.3 Origins and development of pans and playas
376(3)
15.2 Pan hydrology and hydrochemistry
379(7)
15.2.1 Inflow and water balance modelling
380(2)
15.2.2 Geochemical processes and mineral precipitation
382(2)
15.2.3 The importance of groundwater: classification of playa and pan types
384(1)
15.2.4 Implications of climate change and human impacts on playa hydrology
385(1)
15.3 Influences of pan hydrology and hydrochemistry on surface morphology
386(3)
15.3.1 Pan topography
386(2)
15.3.2 Surface dynamics: mapping pan surface morphologies using remote sensing
388(1)
15.4 Aeolian processes in pan environments
389(5)
15.4.1 Wind action on the pan surface
391(1)
15.4.2 The emission of fine panicles (dust): process and controls
391(1)
15.4.3 Lunette dunes
392(2)
15.4.4 Yardangs
394(1)
15.5 Pans and playas as palaeoenvironmental indicators
394(9)
15.5.1 Identification and dating of pan shorelines
394(1)
15.5.2 Dating and stratigraphy of lunette dunes
394(1)
15.5.3 Stable isotope studies and pan hydrochemical evolution
395(1)
References
395(8)
16 Groundwater controls and processes
403(22)
David J. Nash
16.1 Introduction
403(1)
16.2 Groundwater processes in valley and scarp development
404(9)
16.2.1 Erosion by exfiltrating water: definitions and mechanisms
404(1)
16.2.2 Seepage erosion and valley formation
404(4)
16.2.3 Characteristics of drainage networks developed by groundwater seepage erosion
408(3)
16.2.4 Parameters promoting the operation of groundwater seepage erosion processes
411(1)
16.2.5 Groundwater seepage erosion and environmental change
411(1)
16.2.6 In situ deep-weathering and valley development
412(1)
16.3 Groundwater and pan/playa development
413(1)
16.4 Groundwater and aeolian processes
414(11)
References
418(7)
IV The work of the wind
425(144)
17 Aeolian landscapes and bedforms
427(28)
David S.G. Thomas
17.1 Introduction
427(1)
17.2 Aeolian bedforms: scales and relationships
427(3)
17.2.1 Scale effects in aeolian bedform development
430(1)
17.3 The global distribution of sand seas
430(7)
17.3.1 Sand sea development
432(1)
17.3.2 Sediment supply in sand seas
432(3)
17.3.3 Sandflow conditions and sand sea development
435(1)
17.3.4 Sand sheets
435(2)
17.4 The global distribution of loess
437(2)
17.4.1 Loess production and distribution
437(1)
17.4.2 Peridesert loess
437(2)
17.5 Dynamic aeolian landscapes in the Quaternary period
439(9)
17.5.1 Dating aeolian landscape change
443(5)
17.6 Conclusions
448(7)
References
448(7)
18 Sediment mobilisation by the wind
455(32)
Giles F. S. Wiggs
18.1 Introduction
455(1)
18.2 The nature of windflow in deserts
456(8)
18.2.1 The turbulent velocity profile
456(1)
18.2.2 Measuring shear velocity (u) and wind stress
457(3)
18.2.3 Measuring aerodynamic roughness (z0)
460(2)
18.2.4 The effect of nonerodible roughness elements on velocity profiles
462(2)
18.3 Sediment in air
464(2)
18.3.1 Grain entrainment
464(2)
18.4 Determining the threshold of grain entrainment
466(2)
18.5 Surface modifications to entrainment thresholds and transport flux
468(3)
18.5.1 Surface crusting
468(1)
18.5.2 Bedslope
469(1)
18.5.3 Moisture content
469(2)
18.6 Modes of sediment transport
471(2)
18.6.1 Suspension
471(1)
18.6.2 Creep
471(1)
18.6.3 Reptation
472(1)
18.6.4 Saltation
472(1)
18.7 Ripples
473(2)
18.7.1 Ballistic ripples
474(1)
18.8 Prediction and measurement of sediment flux
475(3)
18.9 The role of turbulence in aeolian sediment transport
478(1)
18.10 Conclusions
479(8)
References
479(8)
19 Desert dune processes and dynamics
487(30)
Nick Lancaster
19.1 Introduction
487(1)
19.2 Desert dune morphology
487(1)
19.3 Dune types and environments
487(7)
19.3.1 Crescentic dunes
487(3)
19.3.2 Linear dunes
490(4)
19.3.3 Star dunes
494(1)
19.3.4 Parabolic dunes
494(1)
19.3.5 Zibars and sand sheets
494(1)
19.4 Airflow over dunes
494(3)
19.4.1 The stoss or windward slope
495(2)
19.4.2 Lee-side flow
497(1)
19.5 Dune dynamics
497(5)
19.5.1 Erosion and deposition patterns on dunes
497(3)
19.5.2 Long-term dune dynamics
500(2)
19.6 Dune development
502(1)
19.7 Controls of dune morphology
503(6)
19.7.1 Sediment characteristics
503(1)
19.7.2 Wind regimes
503(1)
19.7.3 Sand supply
504(1)
19.7.4 Vegetation
505(1)
19.7.5 Controls of dune size and spacing
505(3)
19.7.6 Dune trends
508(1)
19.8 Dune patterns
509(2)
19.9 Conclusions
511(6)
References
511(6)
20 Desert dust
517(22)
Richard Washington
Giles S. F. Wiggs
20.1 Introduction
517(9)
20.1.1 Dust in a geomorphological context
517(5)
20.1.2 Measuring dust
522(2)
20.1.3 Modelling dust
524(1)
20.1.4 Distribution of dust
525(1)
20.2 Key source areas
526(6)
20.2.1 Bodele Depression, Chad
526(2)
20.2.2 Saharan Empty Quarter
528(2)
20.2.3 China
530(1)
20.2.4 Southern Africa and Australia
531(1)
20.3 Temporal changes in dust
532(1)
20.3.1 Observational record
532(1)
20.4 Future climate change
532(1)
20.5 Conclusions
532(7)
References
533(6)
21 Wind erosion in drylands
539(30)
Julie E. Laity
21.1 Introduction
539(1)
21.2 The physical setting: conditions for wind erosion
540(24)
21.2.1 Processes of aeolian erosion
540(1)
21.2.2 Yardangs
541(4)
21.2.3 Yardang formative processes
545(8)
21.2.4 Inverted topography
553(1)
21.2.5 Ventifacts
553(11)
21.3 Conclusions
564(5)
References
564(5)
V Living with dryland geomorphology
569(42)
22 The human impact
571(12)
Nick Middleton
22.1 Introduction
571(1)
22.2 Human impacts on soils
571(5)
22.2.1 Terracing and rainwater harvesting
571(2)
22.2.2 Irrigated agriculture
573(1)
22.2.3 Accelerated erosion
574(1)
22.2.4 Grazing
575(1)
22.3 Human impacts on sand dunes
576(1)
22.4 Human impacts on rivers
576(2)
22.4.1 Large dams
576(1)
22.4.2 Urbanisation
577(1)
22.4.3 Changes in vegetation
578(1)
22.5 Cause and effect: the arroyo debate continues
578(1)
22.6 Conclusions
579(4)
References
579(4)
23 Geomorphological hazards in drylands
583(16)
Giles F. S. Wiggs
23.1 Introduction
583(1)
23.2 Aeolian hazards
583(3)
23.2.1 Blowing sand and active dune movement
583(2)
23.2.2 Human disturbance of stable surfaces
585(1)
23.3 The aeolian dust hazard
586(1)
23.4 Agricultural wind erosion
587(2)
23.5 Drainage of inland water bodies
589(4)
23.6 Fluvial hazards
593(1)
23.7 Conclusions
594(5)
References
595(4)
24 Future climate change and arid zone geomorphology
599(12)
Richard Washington
David S.G. Thomas
24.1 Introduction
599(1)
24.2 Climate change projections: basis and uncertainties
599(1)
24.3 Overview of global climate change projections in the context of arid zones
600(3)
24.3.1 Methods of establishing climate change impacts in arid zones
602(1)
24.4 Climate change and dunes
603(2)
24.5 Climate change and dust
605(2)
24.6 Climate change and fluvial systems
607(1)
24.7 Conclusions
607(4)
References
608(3)
Index 611
David S. G. Thomas is a scientist and geographer. He was born in Buckland Hospital, Dover, Kent, UK, in 1958. He is professor of geography at the University of Oxford, and a professorial fellow of Hertford College, Oxford.