Atjaunināt sīkdatņu piekrišanu

Arithmetic of Finite Fields: 8th International Workshop, WAIFI 2020, Rennes, France, July 68, 2020, Revised Selected and Invited Papers 1st ed. 2021 [Mīkstie vāki]

Edited by , Edited by
  • Formāts: Paperback / softback, 273 pages, height x width: 235x155 mm, weight: 454 g, 13 Illustrations, color; 8 Illustrations, black and white; XVIII, 273 p. 21 illus., 13 illus. in color., 1 Paperback / softback
  • Sērija : Theoretical Computer Science and General Issues 12542
  • Izdošanas datums: 17-Feb-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030688682
  • ISBN-13: 9783030688684
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 273 pages, height x width: 235x155 mm, weight: 454 g, 13 Illustrations, color; 8 Illustrations, black and white; XVIII, 273 p. 21 illus., 13 illus. in color., 1 Paperback / softback
  • Sērija : Theoretical Computer Science and General Issues 12542
  • Izdošanas datums: 17-Feb-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030688682
  • ISBN-13: 9783030688684
This book constitutes the thoroughly refereed post-workshop proceedings of the 8th International Workshop on the Arithmetic of Finite Field, WAIFI 2020, held in Rennes, France in July 2020.





Due to the COVID-19, the workshop was held online.





The 12 revised full papers and 3 invited talks presented were carefully reviewed and selected from 22 submissions. The papers are organized in topical sections on invited talks, Finite Field Arithmetic, Coding Theory, Network Security and much more.
Finite Field Arithmetic.- Coding Theory.- Sequences.- Special Functions
over Finite Fields.- Bases.